
Diffusion Probabilistic Models for
Structured Node Classification

Hyosoon Jang1, Seonghyun Park1, Sangwoo Mo2, Sungsoo Ahn1

1POSTECH 2KAIST
{hsjang1205,shpark26,sungsoo.ahn}@postech.ac.kr, swmo@kaist.ac.kr

Abstract

This paper studies structured node classification on graphs, where the predictions
should consider dependencies between the node labels. In particular, we focus on
solving the problem for partially labeled graphs where it is essential to incorporate
the information in the known label for predicting the unknown labels. To address
this issue, we propose a novel framework leveraging the diffusion probabilistic
model for structured node classification (DPM-SNC). At the heart of our framework
is the extraordinary capability of DPM-SNC to (a) learn a joint distribution over
the labels with an expressive reverse diffusion process and (b) make predictions
conditioned on the known labels utilizing manifold-constrained sampling. Since
the DPMs lack training algorithms for partially labeled data, we design a novel
training algorithm to apply DPMs, maximizing a new variational lower bound. We
also theoretically analyze how DPMs benefit node classification by enhancing the
expressive power of GNNs based on proposing AGG-WL, which is strictly more
powerful than the classic 1-WL test. We extensively verify the superiority of our
DPM-SNC in diverse scenarios, which include not only the transductive setting on
partially labeled graphs but also the inductive setting and unlabeled graphs.

1 Introduction

In this paper, we address the node classification problem, which is a fundamental problem in machine
learning on graphs with various applications, such as social networks [1] and citation networks [2].
One representative example is a transductive problem to classify documents from a partially labeled
citation graph. Recently, graph neural networks (GNNs) [3, 4] have shown great success in this
problem over their predecessors [5, 6]. Their success stems from the high capacity of non-linear
neural architectures combined with message passing.

However, the conventional GNNs are incapable of structured node classification: predicting node
labels while considering the node-wise label dependencies [7–9]. That is, given a graph G with
vertices V and node labels {yi : i ∈ V}, a GNN with parameter θ outputs an unstructured prediction,
i.e., pθ(yi, yj |G) = pθ(yi|G)pθ(yj |G) for i, j ∈ V . Especially, this limitation becomes problematic
in a transductive setting where the prediction can be improved by incorporating the known labels,
e.g., output pθ(yi|G, yj) for known yj . In Figures 1(a) and 1(b), we elaborate on this issue with an
example where the conventional GNN fails to make the correct prediction.

To resolve this issue, recent studies have investigated combining GNNs with classical structured
prediction algorithms, i.e., schemes that consider dependencies between the node labels [8–13]. They
combine GNNs with conditional random fields [14], label propagation [15], or iterative classification
algorithm [2]. Despite the promising outcomes demonstrated by these studies, their approach relies
on the classical algorithms to express joint dependencies between node labels and may lack sufficient
expressive power or consistency in incorporating known labels.

Preprint. Under review.

ar
X

iv
:2

30
2.

10
50

6v
4

 [
cs

.L
G

]
 1

6
Ju

n
20

23

(a) Input (b) GCN [3] (c) GMNN [7] (d) CLGNN [13] (e) DPM-SNC (ours)

Figure 1: Results of various methods to solve node classification on a non-attributed and partially
labeled cyclic grid. (a) The task is to estimate p(yU |yL, G) where the known labels yL are highlighted
in green and the unknown labels yU are colored in gray. (b)-(e) Red highlights the incorrect
predictions made by the corresponding algorithm. Conventional GNN (GCN) fails to make an
informative prediction while our DPM-SNC is the only method to perfectly predict all the labels.

Contribution. We propose a novel framework for structured node classification called DPM-SNC.
Our key idea is to leverage the diffusion probabilistic model (DPM) [16], motivated by two significant
advantages of DPM for structured node classification: (a) it can effectively learn a joint distribution
over both the unknown and the known labels, and (b) it can easily incorporate conditions during
inference via posterior sampling. Figure 1 highlights that DPM significantly outperforms previous
methods when the prediction problem requires a complete understanding of label dependencies.

However, DPM cannot be directly applied to the transductive scenario, where the model needs to
maximize its log-likelihood for partially labeled graphs. We propose a novel training algorithm
to address this challenge. Our method maximizes a new variational lower bound of the marginal
likelihood of the graph over the unlabeled nodes, involving the alternative optimization of DPM and
a variational distribution. In this process, we estimate the variational distribution from the current
DPM using a similar approach to fixed-point iteration [17]. After training, DPM can predict the
remaining node labels by constraining its predictions with the given labeled nodes, utilizing the
manifold-constrained sampling technique [18].

In addition, we provide a theoretical analysis that supports the benefits of DPM-SNC for node
classification by enhancing the expressive power of GNNs. To this end, we derive an analog of our
DPM-SNC based on the Weisfeiler-Lehman (WL) [19] test, evaluating the ability to distinguish
non-isomorphic graphs. Specifically, we prove that DPM-SNC is as powerful as our newly derived
aggregated Weisfeiler-Lehman (AGG-WL) test, which is strictly more powerful than the 1-WL test, a
known analog to standard GNN architectures [20] such as GCN [3] and GAT [21].

We demonstrate the effectiveness of DPM-SNC on various datasets, covering both transductive and
inductive settings. In the transductive setting, we conduct experiments on seven benchmarks: Pubmed,
Cora, and Citeseer [22]; Photo and Computer [23]; and Empire and Ratings [24]. Additionally,
we introduce a synthetic benchmark to evaluate the ability to capture both short and long-range
dependencies. DPM-SNC outperforms the baselines, including both homophilic and heterophilic
graphs. In the inductive setting, we conduct experiments on four benchmarks: Pubmed, Cora, Citeseer,
and PPI [25]. Furthermore, we evaluate DPM-SNC on the algorithmic reasoning benchmark [26],
which requires a higher-level understanding of node relations. DPM-SNC also outperforms previous
algorithms for these tasks.

To summarize, our contribution can be listed as follows:

• We explore DPM as an effective solution for structured node classification due to its inherent
capability in (a) learning the joint node-wise label dependency in data and (b) making predictions
conditioned on partially known data (Section 3).

• We propose a novel method for training a DPM on partially labeled graphs that leverages the
probabilistic formulation of DPM to maximize the variational lower bound (Section 4).

• We provide a theoretical analysis of how DPM enhances the expressive power of graph neural
networks, strictly improving its capability over the 1-WL test (Section 5).

• Our experiments demonstrate the superiority over the baselines in both transductive and inductive
settings. We additionally consider heterophilic graphs and algorithmic reasoning benchmarks to
extensively evaluate the capability of DPMs in understanding the label dependencies (Section 6).

2

2 Related Work

Graph neural networks (GNNs). Graph neural networks (GNNs) are neural networks specifically
designed to handle graph-structured data. Over the past years, GNNs have shown promising outcomes
in various tasks related to graph representation learning [3, 4, 27, 28]. In the case of node classification,
GNNs aggregate neighboring node information and generate node representations for label predictions.
Their expressive power has been analyzed through the lens of the Weisfeiler-Lehman (WL) test [19],
a classical algorithm to distinguish non-isomorphic graphs. For example, Xu et al. [20] proved how
the expressive power of conventional GNNs is bounded by the 1-dimensional WL (1-WL) test.

Structured node classification with GNNs. Apart from investigating the power of GNNs to
discriminate isomorphic graphs, several studies focused on improving the ability of GNNs to learn
the joint dependencies [7, 9, 13, 26, 29–31]. In particular, researchers have considered GNN-based
structured node classification [7, 9, 13]. First, Qu et al., [7] parameterize the potential functions of
conditional random fields using a GNN and train it using pseudo-likelihood maximization [32]. Next,
Qu et al., [9] proposed a training scheme with a GNN-based proxy for the conditional random field.
Hang et al., [13] proposed an iterative classification algorithm-based learning framework of GNNs
that updates each node-wise prediction by aggregating previous predictions on neighboring nodes.

Diffusion probabilistic models (DPMs). Inspired by non-equilibrium thermodynamics, DPMs are
latent variable models (LVMs) that learn to reverse a diffusion process and construct data from a
noise distribution. Recent studies demonstrated great success of DPMs in various domains, e.g.,
generating images [33], text [34], and molecules [35]. An important advantage of diffusion models is
their ability to incorporate additional constraints. This allows DPM to solve the posterior inference
problems, e.g., conditioning on the partially observed data to recover the original data [18, 36, 37].

3 Diffusion Probabilistic Models for Structured Node Classification

In this section, we introduce the problem of structured node classification and discuss the limitations
of graph neural networks (GNNs) in addressing this problem (Section 3.1). We then explain how the
diffusion probabilistic models (DPMs) offer a promising solution for this problem (Section 3.2).

3.1 Structured node classification

diffusion and projection

reverse process

step 1 step 50 step 100

no
de

-w
is

e
pr

ed
ic

tio
ns

know
n

labels

Figure 2: DPM makes predictions with label de-
pendencies. The node color indicates the label
value, and opacity reflects the likelihood.

We address structured node classification, which
involves predicting node labels while consider-
ing their joint dependencies. Specifically, we
focus on the task of predicting labels in par-
tially labeled graphs, where some true labels are
known before the prediction.1 Our goal is to
devise an algorithm that considers the dependen-
cies with known labels to enhance predictions
for unknown labels.

To be specific, our problem involves a graph
G = (V, E ,x) consisting of nodes V , edges E ,
and node attributes x = {xi : i ∈ V}. We also
denote the node labels by y = {yi : i ∈ V}.
We let VL and VU denote the set of labeled
and unlabeled nodes, while yL and yU de-
note the corresponding labels for each set, e.g.,
yL = {yi : i ∈ VL}. Our objective is to pre-
dict the unknown labels yU by training on the
partially labeled graph, aiming to infer the true
conditional distribution p(yU |G,yL).

We point out that the conventional GNNs [3, 4, 27, 28] are suboptimal for estimating p(yU |G,yL)
since their predictions on the node labels are independently conditioned on the input, i.e., their
predictions are factorized by pθ(yU |G,yL) =

∏
i∈VU

pθ(yi|G). Namely, conventional GNNs cannot

1We also show structured node classification to be important for unlabeled graphs in Section 5.

3

(𝐺, 𝒚)(𝐺, 𝒚𝐋)
posterior

unlabeled node

buffer 𝓑

inserts

sampling
𝒚𝑼

(a) Update the buffer with samples from pθ(yU |G,yL).

lower bound (𝐺, 𝒚("))maximize(𝐺, 𝒚)
buffer 𝓑

diffusion

samples
𝒚𝑼

(b) Update the DPM parameter to maximize LVLB.

Figure 3: Illustration of DPM-SNC training on par-
tially labeled graphs, repeating steps (a) and (b).

Algorithm 1 DPM-SNC

1: Train a mean-field GNN pϕ(y|G).
2: Initialize the buffer B by pϕ(yU |G).
3: repeat
4: for i = 1, . . . , N1 do
5: Get yU ∼ pθ(yU |G,yL) using

manifold-constrained sampling.
6: Update B ← B ∪ {yU}.
7: If |B| > K, remove oldest one in B.
8: end for
9: for i = 1, . . . , N2 do

10: Sample yU ∼ B.
11: Update θ to maximize LVLB with G,

and y = yL ∪ yU .
12: end for
13: until converged

incorporate the information of the known labels yL into a prediction of the unknown labels yU .
Structured prediction algorithms [2, 14] overcome this issue by solving two tasks: (a) learning a joint
distribution pθ(yU ,yL|G) to maximize the likelihood of labeled data pθ(yL|G) and (b) inferring
from the distribution pθ(yU |G,yL) conditioned on known labels.

3.2 Diffusion probabilistic models for structured node classification

In this work, we consider diffusion probabilistic models for structured node classification (DPM-
SNC) motivated by how their strengths align with the essential tasks for solving structured node
classification, outlined in Section 3.1. In particular, DPMs are equipped with (a) high expressivity in
learning a joint distribution over data and (b) the ability to easily infer from a posterior distribution
conditioned on partially observed data.

To this end, we formally describe DPMs for a graph G associated with node-wise labels y. At a
high level, DPMs consist of two parts: forward and reverse processes. Given the number of diffusion
steps T , the forward process constructs a sequence of noisy labels y(1:T) = [y(1), . . . ,y(T)] using a
fixed distribution q(y(1:T)|y(0)) starting from the true label y(0) = y. Next, given an initial sample
y(T) sampled from p(y(T)), the reverse process pθ(y(0:T−1)|y(T), G) aims to recover the forward
process. To be specific, the forward and the reverse process are factorized as follows:

q(y(1:T)|y(0)) =

T∏
t=1

q(y(t)|y(t−1)), pθ(y
(0:T−1)|y(T), G) =

T∏
t=1

pθ(y
(t−1)|y(t), G).

By leveraging shared latent variables y(t) across multiple steps in the reverse process, the reverse
process effectively considers the dependencies in the output.

Next, DPMs can easily infer from a posterior distribution conditioned on partially observed data.
Specifically, the incremental updating of y(t) for t = 1, . . . , T allows the DPM to incorporate the
known label yL, e.g., applying iterative projection with manifold-based correction [18]. This enables
inference from the distribution pθ(yU |G,yL) conditioned on the known labels yL. See Figure 2 for
an illustration of DPM for structured node classification with known labels.

4 Training Diffusion Probabilistic Models on Partially Labeled Graphs

Despite the potential of DPMs for structured node classification, they lack the algorithms to learn
from partially labeled graphs, i.e., maximize the likelihood of known labels. To resolve this issue, we
introduce a novel training algorithm for DPM-SNC, based on maximizing a variational lower bound
for the log-likelihood of known labels.

4

Variational lower bound. At a high-level, our algorithm trains the DPM to maximize the log-
likelihood of training data log pθ(yL|G), which is defined as follows:

L = log pθ(yL|G) = log
∑
yU

∑
y(1:T)

pθ(yL,yU ,y
(1:T)|G).

However, this likelihood is intractable due to the exponentially large number of possible combinations
for the unknown labels yU and the noisy sequence of labels y(1:T). To address this issue, we train
the DPM based on a new variational lower bound L ≥ LVLB, expressed as follows:

LVLB = Eq(yU |yL)

[
Eq(y(1:T)|y)

[
log pθ(y,y

(1:T)|G)− log q(y(1:T)|y)
]
− log q(yU |yL)

]
. (1)

Here, q(·) is a variational distribution factorized by q(yU ,y
(1:T)|yL) = q(y(1:T)|y)q(yU |yL), where

y = yU ∪ yL. We provide detailed derivation in Appendix A.1.

Parameterization. We define the reverse process pθ(y(t−1)|y(t), G) with a Gaussian distribution,
where the mean value parameterized by a graph neural network (GNN) and the variance set to be a
hyper-parameter. Following the prior work [16], we also employ a Gaussian diffusion to parameterize
the forward process q(y(1:T)|y) as follows:

q(y(1), . . . ,y(T)|y(0)) =

T∏
t=1

N (y(t);
√

1− βty
(t−1), βtI),

where I is an identity matrix, β1, . . . , βT are fixed variance schedules. We set the variance schedule
to promote q(y(T)|y(0)) ≈ N (y(T);0, I) by setting βt < βt+1 for t = 0, . . . , T − 1 and βT = 1.
Finally, we describe the variational distribution q(yU |yL) as an empirical distribution over a fixed-size
buffer B containing multiple estimates of the unknown labels yU . This buffer is updated throughout
the training. We provide more details on our parameterization in Appendix A.2.

Training algorithm. To maximize the variational lower bound, we alternatively update the re-
verse process pθ(y,y

(1:T)|G) and the variational distribution q(yU |yL). In particular, we train
pθ(y,y

(1:T)|G) to maximize the Monte Carlo approximation of LLVB by applying ancestral sampling
to the variational distribution q(y(1:T)|y)q(yU |yL), i.e., sampling yU from the buffer B and applying
the diffusion process to y. The detailed training objective is described in Appendix A.3.

Next, we update the variational distribution q(yU |yL) by inserting samples from the distribu-
tion pθ(yU |G,yL) into the buffer B.2 This update is derived from the condition q(yU |yL) =
pθ(yU |G,yL) being necessary to maximize LVLB, similar to the derivation of fixed-point iteration
for optimization [17]. We describe the overall optimization procedure in Algorithm 1.3

Finally, we emphasize that our training algorithm is specialized for DPMs. Previous studies in-
troducing variational lower bounds for structured node classifications [7, 38] face intractability
in maximizing log pθ(y|G) or sampling from pθ(yU |G,yL). They require defining the pseudo-
likelihood for the former [32], or parameterizing variational distribution for the latter. However, in
our case, the formal simply requires maximizing the lower bound LVLB, and the latter is easily solved
by manifold-constrained sampling [18].

5 Theoretical Analysis

In this section, we present a secondary motivation for using DPMs in node classification, distinct
from the one given in Section 3 and Section 4. Specifically, we demonstrate that DPMs provably
enhance the expressive power of conventional GNNs for solving the graph isomorphism test, implying
improved expressive power for node classification problems as well.

To this end, we assess the expressive power of our DPM-SNC by its analog for discriminating
isomorphic graphs, which we call the aggregated Weisfeiler-Lehman (AGG-WL) test. Then, we show

2We use manifold-constrained sampling of DPM to infer from the distribution pθ(yU |G,yL) [18]. The
detailed sampling procedure is described in Appendix A.4.

3In practice, we initialize the buffer B with samples from a mean-field GNN pϕ(y|G), which outputs an
independent joint distribution over node labels, i.e., pθ(yU |G,yL) =

∏
i∈VU

pθ(yi|G).

5

that AGG-WL is strictly more powerful than the 1-dimensional WL (1-WL) test [19], which is an
analog of GNNs [20]. We formalize our results in the following theorem.

Theorem 1. Let 1-WL-GNN be a GNN as powerful as the 1-WL test. Then, DPM-SNC using a
1-WL-GNN is strictly more powerful than the 1-WL-GNN in distinguishing non-isomorphic graphs.

We provide the formal proof in Appendix B. At a high level, both the 1-WL test and the AGG-WL test
assign colors to nodes and iteratively refine them based on the colors of neighboring nodes, enabling
the comparison of graph structures. The key difference is that 1-WL initializes the color assignments
for each node to be uniform, while AGG-WL adds perturbations at initial color assignments. Then
AGG-WL additionally aggregates over graphs with all possible kinds of perturbations. Hence, any
graph pair distinguishable by the 1-WL test is also distinguishable by our AGG-WL test, and there
exist pairs of graphs indistinguishable by the WL test but distinguishable by our variant.

We remark that our analysis can be easily extended to applying other latent variable models, e.g.,
variational auto-encoders [39] or normalizing flows [40], for node classification. In this analysis,
sampling a latent variable corresponds to fixing a perturbation for color assignments at initialization,
and aggregating over the perturbed graphs corresponds to computing the prediction over the true
labels with marginalization over the latent variables. Our theory is based on that of Bevilaqua
et al. [41] which was originally developed for analyzing a particular GNN architecture; our key
contribution lies in extending this analysis to the latent variable models.

6 Experiments

6.1 Transductive setting

We first evaluate the performance of our algorithm in the transductive setting. Specifically, we conduct
an evaluation of DPM-SNC on synthetic data, as well as real-world node classification problems.
We consider different types of label dependencies by considering both homophilic and heterophilic
graphs. We provide the details of our implementation in Appendix C.1.

(a) Scattered (b) Localized

Figure 4: Illustration of two scenarios.
Green highlights known labels.

Table 1: The transductive node classifica-
tion accuracy on synthetic data. Bold num-
bers indicate the best performance.

Method Scattered Localized

GCN [3] 50.1±0.6 51.3±1.4

+ GMNN [7] 64.2±3.2 48.2±4.8

+ G3NN [8] 50.1±0.6 51.3±1.4

+ CLGNN [13] 87.0±2.4 53.4±2.1

+ DPM-SNC (ours) 98.5±0.7 90.9±3.4

Synthetic data. In this experiment, we create a 2 ×
n non-attributed cyclic grid. Each node is assigned
either a binary label, with neighboring nodes having
different labels. We consider two scenarios: one where
the known labels are randomly scattered throughout
the graph, and another where they are clustered in a
local region. Examples of both scenarios are illustrated
in Figures 4(a) and 4(b). These two scenarios verify
the capability for capturing both short and long-range
dependencies between node labels. The data statistics
are described in Appendix D.

We compare DPM-SNC with conventional GNN that
ignores the label dependencies and other structured
node classification methods: GMNN [7], G3NN [8],
and CLGNN [13]. We describe the detailed experimen-
tal setup in Appendix E.1. We report the performance
using five different random seeds.

The results, presented in Table 1, demonstrate that our
method significantly improves accuracy compared to
the baselines when labeled nodes are scattered. This
highlights the superiority of DPM-SNC in considering
label dependencies. Furthermore, our method also ex-
cels in the localized labeled nodes scenario, while the
other baselines fail. These results can be attributed to
the capabilities of DPMs, which effectively captures
long-range dependencies through iterative reverse dif-
fusion steps.

6

Table 2: The transductive node classification performance. N-Acc. and Sub-Acc. denote the node-
level and subgraph-level accuracy, respectively. Bold numbers indicate the best performance among
the structured prediction methods using the same GNN.

Pubmed Cora Citeseer Photo Computer

Method N-Acc. Sub-Acc. N-Acc. Sub-Acc. N-Acc. Sub-Acc. N-Acc. Sub-Acc. N-Acc. Sub-Acc.

LP [42] 69.1±0.0 45.7±0.0 68.1±0.0 46.9±0.0 46.1±0.0 29.8±0.0 81.0±2.0 37.2±1.7 69.9±2.9 15.1±1.1

PTA [43] 80.1±0.2 55.2±0.4 82.9±0.4 62.6±0.8 71.3±0.4 51.4±0.7 91.1±1.5 51.0±1.5 81.6±1.7 26.3±1.0

GCN [3] 79.7±0.3 55.8±0.6 81.4±0.8 59.3±1.1 70.9±0.8 49.8±0.6 91.0±1.2 52.0±1.0 82.4±1.5 27.0±1.5

+LPA [12] 79.6±0.6 53.5±0.9 81.7±0.7 60.3±1.5 71.0±0.6 50.2±1.0 91.3±1.2 52.9±2.0 83.7±1.4 28.5±2.4

+GMNN [7] 82.6±1.0 58.1±1.4 82.6±0.9 61.8±1.3 72.8±0.7 52.0±0.8 91.2±1.2 54.3±1.4 82.0±1.0 28.0±1.6

+G3NN [8] 80.9±0.7 56.9±1.1 82.5±0.4 62.3±0.8 73.9±0.7 53.1±1.0 90.7±1.1 53.0±2.0 82.1±1.2 28.1±2.1

+CLGNN [13] 81.7±0.5 57.8±0.7 81.9±0.5 61.8±0.8 72.0±0.7 51.6±0.9 91.1±1.0 53.4±1.8 83.3±1.2 28.5±1.4

+DPM-SNC (ours) 83.0±0.9 59.2±1.2 83.2±0.5 63.1±0.9 74.4±0.5 53.6±0.6 92.2±0.8 55.3±2.1 84.1±1.3 29.7±1.8

GAT [21] 79.1±0.5 55.8±0.5 81.5±0.6 61.3±0.9 71.0±0.8 50.8±1.0 90.8±1.0 50.8±1.9 83.1±1.6 27.8±2.2

+LPA [12] 78.7±1.1 56.0±1.2 81.5±0.9 60.7±0.8 71.3±0.9 50.1±0.9 91.3±0.8 52.7±2.1 84.4±1.0 29.4±2.6

+GMNN [7] 79.6±0.8 57.0±0.7 82.3±0.7 62.2±0.8 71.7±0.9 51.4±0.9 91.4±1.0 53.1±1.6 83.3±2.0 29.1±1.8

+G3NN [8] 77.9±0.4 55.9±0.5 82.7±1.3 62.7±1.3 74.0±0.8 53.7±0.5 91.5±0.9 52.6±2.2 83.1±1.7 28.8±2.4

+CLGNN [13] 80.0±0.6 57.5±1.2 81.8±0.6 61.5±0.9 72.1±0.8 52.1±0.8 90.6±0.8 51.9±1.8 82.6±1.2 28.4±1.8

+DPM-SNC (ours) 81.7±0.8 59.0±1.1 83.8±0.7 63.8±0.7 74.3±0.7 54.0±0.9 92.0±0.8 54.0±2.4 84.2±1.2 30.0±2.0

GCNII [44] 82.0±0.8 57.2±1.1 84.0±0.6 63.4±0.8 72.9±0.5 52.1±0.7 91.2±1.2 53.2±1.5 82.5±1.4 26.6±1.3

+DPM-SNC (ours) 83.8±0.7 61.6±0.9 85.3±0.6 65.8±0.7 74.1±0.5 54.1±0.9 92.8±1.1 54.2±1.2 84.4±1.8 29.2±1.1

Homophilic graph. In this experiment, we consider five datasets: Pubmed, Cora, and Citeseer [22];
Photo and Computer [23]. For all datasets, 20 nodes per class are used for training, and the remaining
nodes are used for validation and testing. Detailed data statistics are in Appendix D.

We compare DPM-SNC with conventional GNN, and structured prediction baselines. We compare
with label propagation-based methods: LP [42], GCN-LPA [12], and PTA [43]. We also consider
G3NN, GMNN, and CLGNN. We describe the detailed experimental setup in Appendix E.2. As the
backbone network, we consider GCN and GAT [21]. We further evaluate our algorithm with the
recently developed GCNII [44]. For all the datasets, we evaluate the node-level accuracy. We also
report the subgraph-level accuracy, which measures the ratio of nodes with all neighboring nodes
being correctly classified. The performance is measured using ten different random seeds.

The results are presented in Table 2. Our method outperforms the structured prediction-specialized
baselines in both node-label accuracy and subgraph-level accuracy. These results highlight the
superiority of DPM-SNC in solving real-world node classification problems. Furthermore, even when
we combine our method with GCNII [44], our method achieves performance improvements. As can
be observed, DPM-SNC consistently improves performance regardless of the backbone network.

Table 3: The transductive node classifica-
tion accuracy on heterophilic graphs. Bold
numbers indicate the best score.

Empire Rating

H2GCN [45] 60.11±0.52 36.47±0.23

CPGNN [46] 63.96±0.62 39.79±0.77

GPR-GNN [47] 64.85±0.27 44.88±0.34

FSGNN [48] 79.92±0.56 52.74±0.83

GloGNN [49] 59.63±0.69 36.89±0.14

FAGCN [50] 65.22±0.56 44.12±0.30

GBK-GNN [51] 74.57±0.47 45.98±0.71

JacobiConv [52] 71.14±0.42 43.55±0.48

GCN [3] 73.69±0.74 48.70±0.63

SAGE [4] 85.74±0.67 53.63±0.39

GAT [21] 80.87±0.30 49.09±0.63

GAT-sep [24] 88.75±0.41 52.70±0.62

GT [53] 86.51±0.73 51.17±0.66

GT-sep [24] 87.32±0.39 52.18±0.80

DPM-SNC (ours) 89.52±0.46 54.66±0.39

Heterophilic graph. To validate whether our frame-
work can also consider heterophily dependencies, we
consider recently proposed heterophilic graph datasets:
Empire and Ratings [24], where most heterophily-
specific GNNs fail to solve. In Table 3, we compare our
method with six GNNs: GCN, SAGE [4], GAT, GAT-
sep [24], GT [53], and GT-sep [24]. We also compare
with eight heterophily-specific GNNs: H2GCN [45],
CPGNN [46], GPR-GNN [47], FSGNN [48], GloGNN
[49], FAGCN [50], GBK-GNN [51], and JacobiConv
[52]. We employ GAT-sep as a backbone network of
DPM-SNC. For all the baselines, we use the numbers
reported by Platonov et al. [24].

Table 3 shows that our method again achieves compet-
itive performance on heterophilic graphs. While ex-
isting heterophily-specific GNNs do not perform well
on these datasets [24], our method shows improved
performance stems from the extraordinary ability for
considering label dependencies involving heterophily
label dependencies.

7

Table 4: The inductive node classification performance. N-Acc., G-Acc., and F1 denote the node-level
accuracy, graph-level accuracy, and micro-F1 score, respectively. Bold numbers indicate the best
performance among the structured prediction methods using the same GNN.

Pubmed Cora Citeseer PPI

Method N-Acc. G-Acc. N-Acc. G-Acc. N-Acc. G-Acc. F1

GCN [3] 80.25±0.42 54.58±0.51 83.36±0.43 59.67±0.51 76.37±0.35 49.84±0.47 99.15±0.03

+G3NN [8] 80.32±0.30 53.93±0.71 83.60±0.25 59.78±0.47 76.34±0.37 50.76±0.47 99.33±0.02

+CLGNN [13] 80.22±0.45 53.98±0.54 83.45±0.34 60.24±0.38 75.71±0.40 50.51±0.38 99.22±0.04

+SPN [9] 80.78±0.34 54.91±0.40 83.85±0.60 60.35±0.57 76.25±0.48 51.02±1.06 99.35±0.02

+DPM-SNC (ours) 80.58±0.41 55.16±0.43 84.09±0.27 60.88±0.36 77.01±0.49 51.44±0.56 99.46±0.02

GAT [21] 80.10±0.45 54.38±0.54 79.71±1.41 56.66±1.40 74.91±0.22 49.87±0.44 99.54±0.01

+G3NN [8] 79.88±0.62 54.66±0.29 81.19±0.45 58.68±0.38 75.45±0.26 50.86±0.46 99.56±0.01

+CLGNN [13] 80.23±0.40 54.51±0.36 81.38±0.55 58.81±0.61 75.45±0.36 50.66±0.45 99.55±0.01

+SPN [9] 79.95±0.34 54.82±0.33 81.61±0.31 59.17±0.31 75.41±0.35 51.04±0.53 99.46±0.02

+DPM-SNC (ours) 80.26±0.37 54.26±0.47 81.79±0.46 59.55±0.49 76.46±0.60 52.05±0.71 99.63±0.01

Table 5: Performance on graph algorithmic reasoning tasks. Bold numbers indicate the best perfor-
mance. Same-MSE and Large-MSE indicate the performance on ten, and 15 nodes, respectively.

Edge copy Connected components Shortest path

Method Same-MSE Large-MSE Same-MSE Large-MSE Same-MSE Large-MSE

Feedforward 0.3016 0.3124 0.1796 0.3460 0.1233 1.4089
Recurrent [54] 0.3015 0.3113 0.1794 0.2766 0.1259 0.1083
Programmatic [55] 0.3053 0.4409 0.2338 3.1381 0.1375 0.1290
Iterative feedforward [56] 0.6163 0.6498 0.4908 1.2064 0.4588 0.7688
IREM [26] 0.0019 0.0019 0.1424 0.2171 0.0274 0.0464
DPM-SNC (ours) 0.0011 0.0038 0.0724 0.1884 0.0138 0.0286

6.2 Inductive setting

We further show that our DPM-SNC works well not only in transductive settings but also in inductive
settings which involve inductive node classification and graph algorithmic reasoning. We provide the
details of our implementation in Appendix C.2.

Inductive node classification. Following Qu et al. [9], we conduct experiments on both small-scale
and large-scale graphs. We construct small-scale graphs from Pubmed, Cora, and Citeseer, and
construct large-scale graphs from PPI [25]. The detailed data statistics are described in Appendix D.

We compare our DPM-SNC with the conventional GNN and three structured node classification
methods: G3NN, CLGNN, and SPN [9]. As the backbone network of each method, we consider
GCN and GAT. We evaluate node-level accuracy across all datasets and supplement it with additional
metrics: graph-level accuracy for small-scale graphs and micro-F1 score for large-scale graphs. The
graph-level accuracy measures the ratio of graphs with where all the predictions are correct. We report
the performance measured using ten and five different random seeds for small-scale and large-scale
graphs, respectively. The detailed experimental setup is described in Appendix E.3.

We report the results in Table 4. Here, DPM-SNC shows competitive results compared to all the
baselines except for Pubmed. These results suggest that the DPM-SNC also solves inductive node
classification effectively, thanks to their capability for learning joint dependencies between node
labels.

Algorithmic reasoning. We also evaluate our DPM-SNC to predict the outcomes of graph algorithms,
e.g., computing the shortest path between two nodes. Solving such tasks using GNNs has gained
much attention since it builds connections between deep learning and classical computer science
algorithms. Here, we show that the capability of DPM-SNC to make a structured prediction even
brings benefits to solving the reasoning tasks by a deep understanding between algorithmic elements.

We evaluate the performance of our DPM-SNC on three graph algorithmic reasoning benchmarks
proposed by Du et al. [26]: edge copy, connected component, and shortest path. The detailed data
statistics are described in Appendix D. Here, we evaluate performance on graphs with ten nodes.
Furthermore, we also use graphs with 15 nodes to evaluate generalization capabilities. We report the
performance using element-wise mean square error.

8

5 10 20 40 80
Diffusion steps

5

4

3

2

1Nu
m

be
r o

f l
ay

er
s 65.7 67.1 68.4 67.3 68.0

69.6 70.4 71.1 70.7 71.0

70.9 71.3 71.3 71.5 71.9

72.6 73.3 74.0 74.3 74.4

71.4 72.1 72.4 72.4 72.9

Figure 5: Accuracy with varying
GNN layers and diffusion steps.

0 20 40 60 80
Step

65

70

75

80

85

Ac
cu

ra
cy

Pubmed
Cora
Citeseer

Figure 6: Accuracy for changes
in diffusion steps.

0.02 0.04 0.06 0.08
Time (s)

71

72

73

74

75

Ac
cu

ra
cy

GCNII
DPM-SNC

Figure 7: Accuracy with varying
inference time.

We compare our method with five methods reported by Du et al. [26], including a feedforward neural
network, recurrent neural network [54], Pondernet [55], iterative feedforward [56], and IREM [26].
For all the baselines, we use the numbers reported by Du et al. [26]. As these tasks are defined on
edge-wise targets, we modify DPM-SNC to make edge-wise predictions. We describe the detailed
experimental setup in Appendix E.4.

We report the results in Table 5. Our DPM-SNC outperforms the considered baselines for five out of
the six tasks. These results suggest that the diffusion model can easily solve algorithmic reasoning
tasks thanks to its superior ability to make structured predictions.

6.3 Ablation studies

Here, we conduct ablation studies to empirically analyze our framework. All the results are measured
over ten different random seeds.

Diffusion steps vs. number of GNN layers. We first verify that the performance gains in DPM-SNC
mainly stem from the reverse diffusion process which learns the joint dependency between labels. To
this end, we vary the number of diffusion steps along with the number of GNN layers. We report
the corresponding results in Figure 5. One can observe that increasing the number of diffusion steps
provides a non-trivial improvement in performance, which cannot be achieved by just increasing the
number of GNN layers.

Accuracy over diffusion steps. We investigate whether the iteration in the reverse process progres-
sively improves the quality of predictions. In Figure 6, we plot the changes in node-level accuracy
in the reverse process as the number of iterations increases. The results confirm that the iterative
inference process gradually increases accuracy, eventually reaching convergence.

Running time vs. performance. Here, we investigate whether the DPM-SNC can make a good
trade-off between running time and performance. In Figure 7, we compare the change in accuracy of
DPM-SNC with GCNII over the inference time on Citeseer by changing the number of layers and
diffusion steps for DPM-SNC and GCNII, respectively. The backbone network of DPM-SNC is a
two-layer GCN. One can observe that our DPM-SNC shows competitive performances compared
to the GCNII at a similar time. Also, while increasing the inference times of the GCNII does not
enhance performance, DPM-SNC shows further performance improvement.

7 Conclusion and Discussion

In this paper, we propose diffusion probabilistic models for solving structured node classification
(DPM-SNC). Extensive experiments on both transductive and inductive settings show that DPM-SNC
outperforms existing structured node classification methods. An interesting avenue for future work is
the study of characterizing the expressive power of GNNs to make structured predictions, i.e., the
ability to learn complex dependencies between node-wise labels.

Limitations. Our DPM-SCN makes a trade-off between accuracy and inference time through the
number of diffusion steps. Therefore, we believe accelerating our framework with faster diffusion-
based models, e.g., denoising diffusion implicit models (DDIM) [57] is an interesting future work.

9

References
[1] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural

networks for social recommendation. In The world wide web conference, pages 417–426, 2019.
1

[2] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008. 1, 4

[3] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016. 1, 2, 3, 6, 7, 8

[4] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. NeurIPS, 30, 2017. 1, 3, 7

[5] Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Fifth IEEE
international conference on data mining (ICDM’05), pages 8–pp. IEEE, 2005. 1

[6] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 855–864, 2016. 1

[7] Meng Qu, Yoshua Bengio, and Jian Tang. Gmnn: Graph markov neural networks. In Inter-
national conference on machine learning, pages 5241–5250. PMLR, 2019. 1, 2, 3, 5, 6, 7,
22

[8] Jiaqi Ma, Weijing Tang, Ji Zhu, and Qiaozhu Mei. A flexible generative framework for graph-
based semi-supervised learning. Advances in Neural Information Processing Systems, 32, 2019.
1, 6, 7, 8

[9] Meng Qu, Huiyu Cai, and Jian Tang. Neural structured prediction for inductive node classifica-
tion. arXiv preprint arXiv:2204.07524, 2022. 1, 3, 8, 23

[10] Tengfei Ma, Cao Xiao, Junyuan Shang, and Jimeng Sun. CGNF: Conditional graph neural
fields, 2019.

[11] Colin Graber and Alexander Schwing. Graph structured prediction energy networks. Advances
in Neural Information Processing Systems, 32, 2019.

[12] Hongwei Wang and Jure Leskovec. Unifying graph convolutional neural networks and label
propagation. arXiv preprint arXiv:2002.06755, 2020. 7

[13] Mengyue Hang, Jennifer Neville, and Bruno Ribeiro. A collective learning framework to boost
gnn expressiveness for node classification. In International Conference on Machine Learning,
pages 4040–4050. PMLR, 2021. 1, 2, 3, 6, 7, 8, 17

[14] John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. 2001. 1, 4

[15] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label
propagation. 2002. 1

[16] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 2020. 2, 5, 14

[17] BE Rhoades. Some fixed point iteration procedures. International Journal of Mathematics and
Mathematical Sciences, 14(1):1–16, 1991. 2, 5

[18] Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models
for inverse problems using manifold constraints. arXiv preprint arXiv:2206.00941, 2022. 2, 3,
4, 5, 15

[19] Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. nti, Series, 2(9):12–16, 1968. 2, 3, 6, 16

10

[20] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018. 2, 3, 6, 21

[21] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. 2, 7, 8

[22] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In International conference on machine learning, pages 40–48. PMLR,
2016. 2, 7, 23

[23] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018. 2, 7, 23

[24] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila
Prokhorenkova. A critical look at the evaluation of gnns under heterophily: Are we really
making progress? In The Eleventh International Conference on Learning Representations. 2, 7,
23, 25

[25] Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33(14):i190–i198, 2017. 2, 8, 23

[26] Yilun Du, Shuang Li, Joshua Tenenbaum, and Igor Mordatch. Learning iterative reasoning
through energy minimization. In International Conference on Machine Learning, pages 5570–
5582. PMLR, 2022. 2, 3, 8, 9, 22, 24, 26

[27] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017. 3

[28] Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and
Emanuele Rossi. Grand: Graph neural diffusion. In International Conference on Machine
Learning, pages 1407–1418. PMLR, 2021. 3

[29] David Belanger and Andrew McCallum. Structured prediction energy networks. In International
Conference on Machine Learning, pages 983–992. PMLR, 2016. 3

[30] Colin Graber, Ofer Meshi, and Alexander Schwing. Deep structured prediction with nonlinear
output transformations. Advances in Neural Information Processing Systems, 31, 2018.

[31] Victor Garcia Satorras, Zeynep Akata, and Max Welling. Combining generative and discrimi-
native models for hybrid inference. Advances in Neural Information Processing Systems, 32,
2019. 3

[32] Julian Besag. Statistical analysis of non-lattice data. Journal of the Royal Statistical Society:
Series D (The Statistician), 24(3):179–195, 1975. 3, 5

[33] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in Neural Information Processing Systems, 34:8780–8794, 2021. 3

[34] Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori B Hashimoto.
Diffusion-LM improves controllable text generation. arXiv preprint arXiv:2205.14217, 2022. 3

[35] Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant
diffusion for molecule generation in 3d. In International Conference on Machine Learning,
pages 8867–8887. PMLR, 2022. 3

[36] Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffu-
sion posterior sampling for general noisy inverse problems. arXiv preprint arXiv:2209.14687,
2022. 3

[37] Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion
models for inverse problems. In International Conference on Learning Representations, 2023.
3

11

[38] Joseph J Pfeiffer III, Jennifer Neville, and Paul N Bennett. Overcoming relational learning
biases to accurately predict preferences in large scale networks. In Proceedings of the 24th
International Conference on World Wide Web, pages 853–863, 2015. 5

[39] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013. 6

[40] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International conference on machine learning, pages 1530–1538. PMLR, 2015. 6

[41] Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai,
Gopinath Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph
aggregation networks. arXiv preprint arXiv:2110.02910, 2021. 6, 17

[42] Fei Wang and Changshui Zhang. Label propagation through linear neighborhoods. In Pro-
ceedings of the 23rd international conference on Machine learning, pages 985–992, 2006.
7

[43] Hande Dong, Jiawei Chen, Fuli Feng, Xiangnan He, Shuxian Bi, Zhaolin Ding, and Peng
Cui. On the equivalence of decoupled graph convolution network and label propagation. In
Proceedings of the Web Conference 2021, pages 3651–3662, 2021. 7

[44] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International conference on machine learning, pages 1725–1735.
PMLR, 2020. 7

[45] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Be-
yond homophily in graph neural networks: Current limitations and effective designs. Advances
in Neural Information Processing Systems, 33:7793–7804, 2020. 7

[46] Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed, and Danai
Koutra. Graph neural networks with heterophily. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 11168–11176, 2021. 7

[47] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized
pagerank graph neural network. In International Conference on Learning Representations,
2021. 7

[48] Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Improving graph neural networks with
simple architecture design. arXiv preprint arXiv:2105.07634, 2021. 7

[49] Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining Qian.
Finding global homophily in graph neural networks when meeting heterophily. arXiv preprint
arXiv:2205.07308, 2022. 7

[50] Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in
graph convolutional networks. In AAAI. AAAI Press, 2021. 7

[51] Lun Du, Xiaozhou Shi, Qiang Fu, Xiaojun Ma, Hengyu Liu, Shi Han, and Dongmei Zhang.
Gbk-gnn: Gated bi-kernel graph neural networks for modeling both homophily and heterophily,
2022. 7

[52] Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In
International Conference on Machine Learning, pages 23341–23362. PMLR, 2022. 7

[53] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked
label prediction: Unified message passing model for semi-supervised classification. arXiv
preprint arXiv:2009.03509, 2020. 7

[54] Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum,
and Tom Goldstein. Can you learn an algorithm? generalizing from easy to hard problems with
recurrent networks. Advances in Neural Information Processing Systems, 34:6695–6706, 2021.
8, 9

12

[55] Andrea Banino, Jan Balaguer, and Charles Blundell. Pondernet: Learning to ponder. In 8th
ICML Workshop on Automated Machine Learning (AutoML). 8, 9

[56] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International Conference on Machine
Learning, pages 2256–2265. PMLR, 2015. 8, 9

[57] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
International Conference on Learning Representations. 9

[58] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. Advances in Neural Information
Processing Systems, 34:9061–9073, 2021. 17

[59] Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational
pooling for graph representations. In International Conference on Machine Learning, pages
4663–4673. PMLR, 2019. 18

[60] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017. 22

[61] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265,
2019. 26

13

A Details of DPM on partially labeled graphs

A.1 Derivation of variational lower bound

In this section, we provide a detailed derivation of the variational lower bound in Equation (1).

log pθ(yL|G) = logEpθ(yU ,y(1:T)|G)

[
pθ(yL|G,yU ,y

(1:T))
]

= logEq(yU ,y(1:T)|yL)

[
pθ(y,y

(1:T)|G)

q(yU ,y(1:T)|yL)

]
≥ Eq(yU ,y(1:T)|yL)

[
log pθ(y,y

(1:T)|G)− q(yU ,y
(1:T)|yL)

]
= Eq(yU ,y(1:T)|yL)

[
log pθ(y,y

(1:T)|G)− q(y(1:T)|y)− log q(yU |yL)
]

= Eq(yU |yL)

[
Eq(y(1:T)|y)[log pθ(y,y

(1:T)|G)− q(y(1:T)|y)]− log q(yU |yL)
]
.

A.2 Parameterization

Here, we provide more detailed parameterization for DPM-SNC. Following the Gaussian diffusion,
we parameterize p(yT) and pθ(y

(t−1)|G,y(t)) as N (y(T);0, I) and N (y(t−1);µθ(y
(t), G, t), σ2

t),
respectively. Here, we set σ2

t to βt. We also define µθ(y
(t), G, t) as follows:

µθ(y
(t), G, t) =

1
√
αt

(
y(t) − βt√

1− ᾱt
ϵθ(y

(t), G, t)

)
, (2)

where αt = 1− βt and ᾱt =
∏t

i=1 αi. We implement the residual function ϵθ(y
(t), G, t) through a

GNN. The implementation details are described in Appendix C.

A.3 Detailed training objective

We describe the detailed training objective of LVLB for optimization. We first rewrite LVLB as follows:
LVLB

= Eq(yU |yL)

[
Eq(y(1:T)|y)

[
log pθ(y,y

(1:T)|G)− log q(y(1:T)|y)
]
− log q(yU |yL)

]
= Eq(yU |yL)

[
Eq(y(1:T)|y)

[T∑
t=1

log
pθ(y

(t−1)|G,y(t))

q(y(t)|y(t−1))
+ log p(y(T))

]
− log q(yU |yL)

]

= Eq(yU |yL)

[
Eq(y(1:T)|y)

[T∑
t=1

log
pθ(y

(t−1)|G,y(t))

q(y(t−1)|y(t),y)

q(y(t−1)|y)
q(y(t)|y)

+ log p(y(T))

]
− log q(yU |yL)

]

= Eq(yU |yL)

[
Eq(y(1:T)|y)

[T∑
t=1

log
pθ(y

(t−1)|G,y(t))

q(y(t−1)|y(t),y)
+ log

p(y(T))

q(y(T)|y)

]
− log q(yU |yL)

]

= Eq(yU |yL)

[T∑
t=1

Eq(y(1:T)|y)

[
log

pθ(y
(t−1)|G,y(t))

q(y(t−1)|y(t),y)

]
+ Eq(y(T)|y)

[
log

p(y(T))

q(y(T)|y)

]
− log q(yU |yL)

]

= Eq(yU |yL)

[T∑
t=1

L(t)
DPM + C − log q(yU |yL)

]
,

where L(t)
DPM is a training objective for a t step, and C is a constant with respect to the parameters θ.

Following Ho et al. [16], we simplify L(t)
DPM with a residual function ϵθ(y

(t), G, t) in Equation (2).

L(t)
DPM = C − Eϵ∼N (0,I)

[
β2
t

2σ2
tαt(1− ᾱt)

∥∥ϵ− ϵθ(
√
ᾱty +

√
1− ᾱtϵ, G, t)

∥∥2
2

]
,

where C is a constant with respect to the parameters θ. An additional suggestion from Ho et al. [16]
is to set all weights of the mean squared error to one instead of β2

t /2σ
2
tαt(1− ᾱt), and we follow

this suggestion in this paper.

14

A.4 Manifold-constrained sampling

Algorithm 2 Manifold-constrained sampling

1: Input: Graph G, node attributes x, labels yL, and temperature of randomness τ2.
2: Get y(T) ∼ N (y(T);0, τ2I) ▷ Initial sampling
3: for t = T − 1, . . . , 0 do
4: Get z ∼ N (z;0, τ2I)

5: Set ỹ(t) ← 1√
αt

(
y(t+1) − βt+1√

1−ᾱt+1

ϵθ(y
(t+1), G, t+ 1)

)
+ σt+1z

6: Set ŷ(t+1) ← 1√
ᾱt+1

(
y(t+1) − 1−ᾱt+1√

1−ᾱt+1

ϵθ(y
(t+1), G, t+ 1)

)
7: Set ȳ(t) ←

(
ỹ(t) − γ ∂

∂y(t+1)

∥∥∥yL − ŷ
(t+1)
L

∥∥∥2
2

)
▷ Manifold-constrained gradient

8: Set y(t)
U ← ȳ

(t)
U

9: Get z ∼ N (z;0, τ2I)

10: Set y(t)
L ←

√
ᾱtyL +

√
1− ᾱtz ▷ Projection step

11: Set y(t) ← y
(t)
L ∪ y

(t)
U

12: end for
13: return y

(0)
U

To sample yU from pθ(yU |G,yL), we use a manifold-constrained sampling proposed by Chung et
al. [18]. Here, the update rule of the reverse process for t = 0, . . . , T − 1 is defined as follows:

ỹ(t) =
1
√
αt

(
y(t+1) − βt+1√

1− ᾱt+1
ϵθ(y

(t+1), G, t+ 1)

)
+ σt+1z, (3)

y
(t)
U = ȳ

(t)
U , ȳ(t) = ỹ(t) − γ

∂

∂y(t+1)

∥∥∥yL − ŷ
(t+1)
L

∥∥∥2
2
, (4)

y
(t)
L =

√
ᾱtyL +

√
1− ᾱtz, (5)

where z is sampled from N (z;0, τ2I). The Equation (3) is a temporal reverse diffusion step before
applying the manifold-constrained samplings. The Equation (4) applies the manifold-constrained
gradient γ ∂

∂y(t+1) ∥yL− ŷ
(t+1)
L ∥22. Here, ŷ(t+1) is the label estimate in t+1 steps defined as follows:

ŷ(t+1) =
1

√
ᾱt+1

(
y(t+1) − 1− ᾱt+1√

1− ᾱt+1
ϵθ(y

(t+1), G, t+ 1)

)
,

where γ is a hyper-parameter. We set γ to 1/∥yL − ŷ
(t+1)
L ∥22. The Equation (5) is a projection step.

Additionally, we introduce a parameter τ to control the randomness; when we set τ to zero, the
modified reverse step becomes deterministic. This allows us to control the randomness in obtaining
samples. We describe the detailed sampling algorithm in Algorithm 2.

15

B WL test and GNN’s expressiveness

In this section, we provide the proof of Theorem 1 in detail.

B.1 Preliminaries

Algorithm 3 1-dimensional Weisfeiler-Lehman algorithm

1: Input: Graph G = (VG, EG,xG) and the number of iterations T .
2: Output: Color mapping χG : VG → C.
3: Initialize: Let χ0

G(v)← hash(xv) for v ∈ VG.
4: for t = 1, . . . , T do
5: for each v ∈ VG do
6: Set χt

G(v)← hash(χt−1
G (v), {{χt−1

G (u) : u ∈ NG(v)}})
7: end for
8: end for
9: Return: χT

G

We denote set as {}, and multiset as {{}}, which is a set allowing duplicate elements. We represent the
cardinality of set or multiset S as |S|. A graph is denoted as G = (VG, EG,xG), where VG stands
for the set of nodes, EG for the set of edges, and xG = {xG

v : v ∈ VG} for the node-wise attributes.
We also use NG(v) := {u ∈ VG : {v, u} ∈ EG} to denote the set of neighbor nodes of node v in
graph G. We abbreviate a set of integers using the notation [m] := {0, . . . ,m}. We also assume the
hash functions are all injective and denote them by hash(·).
Definition 1 (Vertex coloring). Vertex coloring χG(v) is an injective hash function that maps a vertex
v in graph G to a color c from an abstract color set C. Next, with a slight abuse of notation, we let the
graph color χG indicate the multiset of node colors in graph G, i.e., χG := {{χG(v) : v ∈ VG}}.

Now we explain the 1-dimensional Weisfeiler-Lehman (1-WL) algorithm [19], a classical algorithm
to distinguish non-isomorphic graphs. At a high level, the 1-WL test iteratively updates node
colors based on their neighbors until a stable coloring is reached. To be specific, given a vertex
v, the initial node color χ0

G(v) is set using an injective hash function on the node attribute xv. At
each iteration, each node color is refined based on the aggregation of neighbor node colors, e.g.,
{{χt−1

G (u) : u ∈ NG(v)}}. At the final T -th iteration, the algorithm returns the graph color χT
G. We

provide a detailed description in Algorithm 3.

The 1-WL test allows to compare a pair of graphs G,H using the refined graph colors χT
G, χ

T
H . If

the two graph colors χT
G and χT

H are not equivalent, two graphs G,H are guaranteed to be non-
isomorphic. Otherwise, the test is inconclusive, i.e., the two graphs G,H are possibly isomorphic.
We provide an example run of the 1-WL test in Figure 8(a), where the test is inconclusive.

Related to the 1-WL algorithm, we first prove a characteristic of it that will be later used in our proof.

Lemma 1. Consider running 1-WL on two graphs G = (VG, EG,xG) and H = (VH , EH ,xH). If
the initial graph colors of two graphs are distinct, i.e., χ0

G ̸= χ0
H , the respective outputs of the 1-WL

are also distinct, i.e., χT
G ̸= χT

H .

Proof. We first prove that χt
G ̸= χt

H is satisfied when χt−1
G ̸= χt−1

H . The rest of the proof is
straightforward by induction on t. To be specific, the 1-WL updates χt

G and χt
H as follows:

χt
G = {{hash(χt−1

G (v), {{χt−1
G (u) : u ∈ NG(v)}}) : v ∈ VG}}

χt
H = {{hash(χt−1

H (v), {{χt−1
H (u) : u ∈ NH(v)}}) : v ∈ VH}}.

Since hash(·) is an injective function, χt
G and χt

H are distinct for χt−1
G ̸= χt−1

H .

B.2 AGG-WL test

Next, we describe the newly proposed AGG-WL test, which is an analog of our DPM-SNC. Similar
to the 1-WL test, our AGG-WL test assigns node colors and iteratively refines them based on the

16

neighbor node colors. However, AGG-WL generates augmented graphs at initialization, creating
multiple “views” on the graph with diverse initial vertex coloring. Then it applies 1-WL on each
of the augmented graphs to obtain the augmented graph colors. Finally, AGG-WL aggregates the
augmented graphs colors.

The complete algorithm is described in Algorithm 4. Given a graph G = (VG, EG,xG) and the set of
possible node-wise augmentations ZG , the algorithm generates augmented graph Gm. In particular,
the augmented graph Gm is defined as follows:

Gm = (VG, EG, x̃Gm

), x̃Gm

= {(xG
v ∥ zmv) : v ∈ V}, zm = {zmv : v ∈ V}, zm ∈ ZG

where zm is an augmentation method in ZG. The algorithm creates an augmented graph Gm by
node-wise concatenation of zm to its node attributes xG, where x̃Gm

denotes the node-wise attribute
augmented by zm. The symbol ·∥· denotes the concatenation of two elements. Furthermore, z0 is a
unique token, where G0 has the same information as G. Also, with a slight abuse of notation, we let
the graph color returned by the AGG-WL χAGG

G indicate the multiset of augmented graph colors, i.e.,
χAGG
G := {{χT

Gm : m ∈ [|ZG|]}}. Here, |ZG| denotes the cardinality of set ZG.

Algorithm 4 Aggregation Weisfeiler-Lehman algorithm

1: Input: Graph G = (VG, EG,xG), the number of iterations T , and the augmentation set ZG.
2: Output: Color mapping χG : VG → C.
3: Initialize: Generate |ZG| augmented graphs Gm = (VG, EG,xGm

) where x̃Gm

= {(xG
v ∥ zmv) :

v ∈ VG} for zm ∈ ZG. Let χ0
Gm(v)← hash(x̃Gm

v) for v ∈ VG,m ∈ [|ZG|].
4: for t = 1, . . . , T do
5: for each v ∈ V do
6: for m ∈ [|ZG|] do
7: χt

Gm(v)← hash(χt−1
Gm (v), {{χt−1

Gm (u) : u ∈ NGm(v)}})
8: end for
9: end for

10: end for
11: χAGG

G ← {{χT
Gm : m ∈ [|ZG|]}}

12: Return: χAGG
G

Our contribution is establishing the connection between the AGG-WL and the DPM-SNC: aggregation
of refined graph colors for augmented graphs and marginalization over latent variables. More detail
between DPM-SNC and the AGG-WL test is described in Appendix B.3.2.

We note that our algorithm bears some similarities with several previous studies. The DS-WL and
DSS-WL test [41] defined a modified WL-test based on the set of subgraphs (instead of augmented
graphs) with a modified edge set E ′. Hang et al. [13] uses a collective algorithm to consider pseudo-
labels as additional inputs to boost GNN expressiveness. However, they rely on the assumption that
one can find an “optimal” pseudo-label to discriminate a pair of graphs, which may be hard to realize
in practice. Zhange et al. [58] proposed labeling tricks that learns to capture dependence between
nodes also by adding additional features, but mainly focus on link prediction in inductive settings.

B.3 Proof of Theorem 1

Let us start by restating Theorem 1.

Theorem 1. Let 1-WL-GNN be a GNN as powerful as the 1-WL test. Then, DPM-SNC using a
1-WL-GNN is strictly more powerful than the 1-WL-GNN in distinguishing non-isomorphic graphs.

Proof. We divide the proof into two parts, Appendices B.3.1 and B.3.2. In Appendix B.3.1, we show
that the AGG-WL test is strictly more powerful than the 1-WL test. In Appendix B.3.2, we show
that DPM-SNC using a 1-WL-GNN is as powerful as the AGG-WL test. From these two proofs,
one can conclude that DPM-SNC using a 1-WL-GNN is strictly more powerful than 1-WL-GNNs in
distinguishing non-isomorphic graphs.

17

B.3.1 Expressiveness of AGG-WL test

In this subsection, we prove that the AGG-WL test is strictly more powerful that the 1-WL test. The
high-level idea is showing that (i) the AGG-WL test is at least as powerful as the 1-WL test, i.e., any
two graphs distinguishable by the 1-WL test is also distinguishable by the AGG-WL test, and (ii)
there exist two non-isomorphic graphs that are indistinguishable by the 1-WL test, but distinguishable
by our AGG-WL test.
Lemma 2. AGG-WL is at least as powerful as WL in distinguishing non-isomorphic graphs, i.e., any
two non-isomorphic graphs G,H distinguishable by WL are also distinguishable by AGG-WL.

Proof. We first note that both 1-WL and AGG-WL can discriminate two non-isomorphic graphs
with distinct sizes in a straightforward way. Therefore, we focus on non-trivial cases for two
graphs G = (VG, EG,xG), H = (VH , EH ,xH) where the number of nodes and edges are same,
i.e., |VG| = |VH |, |EG| = |EH |. The cardinality of the augmentation sets are also the same,
|ZG| = |ZH |. We prove if these two graphs G,H are distinguishable by the 1-WL, two graphs G,H
are also distinguishable by the AGG-WL, i.e., if χT

G ̸= χT
H , then χAGG

G ̸= χAGG
H .

First, since χT
G ̸= χT

H is satisfied, χT
G0 ̸= χT

H0 is trivial. Additionally, the initial graphs colors
of graph augmented by the unique token and any other augmentations are distinct, i.e., χ0

G0 ̸=
χ0
H1 , . . . , χ0

H|ZH | . This implies χT
G0 ̸∈ χAGG

H = {χT
H0 , . . . , χT

H|ZH |} according to Lemma 1 which
shows distinct initial graph colors produce the distinct outputs of 1-WL. Since χT

G0 ∈ χAGG
G , one can

see that χAGG
G ̸= χAGG

H .

Next, we show that there exist two graphs G,H indistinguishable by the 1-WL test, but distinguishable
by the AGG-WL test. We first show a simple example from Figure 8(a), then for a family of circular
skip link (CSL) graphs [59].
Lemma 3. Two graphs A,B are indistinguishable by the 1-WL, but distinguishable by the AGG-WL.

Proof. In Figure 8(a), two graphs A,B with 6 nodes are given. Here, the graph color computed by
the 1-WL are equivalent, i.e., χT

G = χT
H (two light blue nodes and four gray nodes). Therefore, two

graphs A,B are indistinguishable by the 1-WL.

Next, we prove that two graphs A,B are distinguishable by the AGG-WL. Since Lemma 1 shows
1-WL always computes a distinct graph color from distinct initial graph colors, we only need to
show that there exists augmented graphs Am, Bm with the same initial color has distinct graph
colors computed by the 1-WL. Then, for two augmented graph sets {Am : m ∈ [|ZVA |]} and
{Bm : m ∈ [|ZVB |]}, we can show that the graph colors computed by AGG-WL are always distinct.

We show a simple case, where augmented graphs with non-zero augmentation on one node results dis-
tinct graph colors computed by the AGG-WL. We denote “single binary node feature augmentation”,
zi as the case where node i is non-zero augmented and other nodes are augmented with zero, e.g.,
z3 = {0, 0, 1, 0, 0, 0}. In Figure 8(b) the non-zero augmented node i is colored in blue, and others
are colored transparent. After applying the 1-WL algorithm on each graph, we obtain the graph color
χT
Ai and χT

Bi for i ∈ {1, . . . , 6}. It is clear that {{χT
Ai : i ∈ {1, . . . , 6}}} ̸= {{χT

Bi : i ∈ {1, . . . , 6}}},
thereby two graphs A,B are distinguishable by AGG-WL.

Circular skip link graphs. CSL graph is denoted as CSL(n, r), where n is the number of nodes,
.i.e., V = {0, . . . , n − 1} and r is the skip connection length. For n and r, r < n − 1 must hold.
There exists 2n edges, between node i and (i+ 1) mod n forming a cycle, and between nodes i and
(i+ r) mod n forming a skip link for i ∈ {0, . . . , n− 1}.
Lemma 4. For n ≥ 8, r ∈ [3, n/2− 1], two graphs CSL(n, 2) and CSL(n, r) are indistinguishable
by the 1-WL, but distinguishable by the AGG-WL.

Proof. We first give a brief proof of why CSL(n, 2) and CSL(n, r) are indistinguishable by the
1-WL, then prove they are distinguishable by AGG-WL. We consider a non-trivial case where the
node attributes are all same, i.e., χ0

G(v) = χ0
G(u) for v, u ∈ VG.

Let the initial color be c0 for all the nodes for graphs CSL(n, 2) and CSL(n, r), χ0
G(v) = c0 ∀v ∈

VG, G ∈ {CSL(n, 2),CSL(n, r)}. Then, for all nodes v ∈ VG, the color refinement process can

18

(a) 1-WL (b) AGG-WL

Figure 8: An example of two non-isomorphic graphs A,B indistinguishable by 1-WL, but dis-
tinguishable by the AGG-WL. (a) Two graphs A,B are associated with nodes sharing the same
attribute. The 1-WL computes the same graph color for A,B, i.e., χT

A = χT
B . (b) Applying AGG-

WL with “single binary node feature augmentation” to the graphs A and B. This results in six
cases for each graph. One can see that the multiset of augmented graph colors are different, i.e.,
{{χT

Ai : i ∈ {1, . . . , 6}}} ̸= {{χT
Bi : i ∈ {1, . . . , 6}}}, thereby two graphs A,B are distinguishable by

the AGG-WL.

than be written as χ1
G(v) = hash(c0, {{c0, c0, c0, c0}}). All nodes have identical colors c1 for both

graphs CSL(n, 2),CSL(n, r), refining the initial graph color. Therefore CSL(n, 2) and CSL(n, r)
are indistinguishable by the 1-WL.

Now we consider the AGG-WL. Again, we only need to show that there exists augmented graphs
Ai, Bj with the same initial color but having distinct graph colors refined by the 1-WL. Given
symmetry, there is only one case of an augmented graph that adds a non-zero augmentation to
one node. We use vi to denote the i-th node in graph and denote the augmented node as v0. We
denote each augmented graph as CSL(n, 2)1,CSL(n, r)1, and let the initial color χ0

G(v0) = c1, and
∀i ∈ {1, . . . , n− 1},∀G ∈ {CSL(n, 2)1,CSL(n, r)1} χ0

G(vi) = c0.

Iteration 1. We focus on the four nodes connected to v0. Since r ∈ [3, n/2− 1], two node vn−r, vr
are distinct. The color refinement can be written as following:

• For v ∈ {v1, v2, vn−1, vn−2}, χ1
CSL(n,2)1(v) = hash(c0, {{c1, c0, c0, c0}}) = c2.

• For v /∈ {v1, v2, vn−1, vn−2}, χ1
CSL(n,2)1(v) = hash(c0, {{c0, c0, c0, c0}}) = c3.

• For v ∈ {v1, vr, vn−1, vn−r}, χ1
CSL(n,r)1(v) = hash(c0, {{c1, c0, c0, c0}}) = c2.

• For v /∈ {v1, vr, vn−1, vn−r}, χ1
CSL(n,r)1(v) = hash(c0, {{c0, c0, c0, c0}}) = c3.

19

(a) Original graph and 1-WL coloring (b) AGG-WL coloring on CSL(8, 2)1,CSL(8, 3)1

Figure 9: Example on two non-attribute CSL(8, 2),CSL(8, 3) graph. (a) 1-WL returns same graph
color for two graphs, i.e., χT

CSL(8,2) = χT
CSL(8,3). (b) Considering symmetry, there is only one type of

augmented graph that with non-zero augmentation on one node, we denoted the augmented graph
as CSL(8, 2)1 and CSL(8, 3)1. In the process of 1-WL assigning colors to augmented graph, they
result different graph color from the second iteration, and one can conclude χT

CSL(8,2)1 ̸= χT
CSL(8,3)1 .

Therefore CSL(8, 2),CSL(8, 3) are distinguishable by the AGG-WL.

Since 1-WL showed χ1
CSL(n,2) = χ1

CSL(n,r) and augmented graphs showed χ1
CSL(n,2)1 = χ1

CSL(n,r)1 ,
two graphs are indistinguishable.

Iteration 2. Again, we focus on four nodes connected to v0. Here, we describe color refinement for
nodes v1, vn−1, v2, vn−2, since the following is enough to prove two graph colors are distinct.

• For v ∈ {v1, vn−1}, χ2
CSL(n,2)1(v) = hash(c2, {{c1, c2, c2, c3}}) = c4.

• For v ∈ {v2, vn−2}, χ2
CSL(n,2)1(u) = hash(c2, {{c1, c2, c3, c3}}) = c5.

• For v ∈ {v1, vn−1}, χ2
CSL(n,r)1(v) = hash(c2, {{c1, c3, c3, c3}}) = c6.

Since c6 /∈ χ2
CSL(n,2)1 , two graphs are distinguishable, i.e., χt

CSL(n,2)1 ̸= χt
CSL(n,r)1 .

Then χT
CSL(n,2)1 ̸= χT

CSL(n,r)1 is satisfied as proved in Lemma 1, thereby two graphs CSL(n, 2) and
CSL(n, r) are distinguishable by the AGG-WL.

In Figure 9, we provide an example with CSL(8, 2) and CSL(8, 3), indistinguishable by the 1-WL
but distinguishable the AGG-WL.

B.3.2 Correspondence between DPM-SNC and AGG-WL

Now, we explain the connection between the DPM-SNC and the AGG-WL test. At a high-level, we
show how DPM-SNC simulates the color refinement process of the AGG-WL. Our main idea stems
from the marginalization in DPM-SNC, which can define the probability of the graph color χ with
the marginalization over augmented graphs, i.e., pθ(χ|G) =

∫
pθ(χ|G,z)p(z|G)dz.4 Specifically,

DPM-SNC considers sample space of graph colors, where each member χ is obtained from pθ(χ|G, z)
with an augmented graph Gm represented by (G, zm). By construction, DPM-SNC considers graph
colors refinements for multiple augmented graphs, similar to how AGG-WL works.

Lemma 5. DPM-SNC using a 1-WL-GNN is as powerful as the AGG-WL test in distinguishing
non-isomorphic graphs.

4The node labels y is replaced to the graph color χ, and applying a latent variable is interpreted as applying
an augmentation to the given graph.

20

Proof. We show that if two graphs G,H are distinguishable by AGG-WL test, it is also distinguish-
able by the DPM-SNC. Assume that the two graphs G,H are distinguishable by the AGG-WL. Then,
the following condition is satisfied.

χAGG
G = {{χT

Gm : m ∈ [|ZG|]}} ≠ χAGG
H = {{χT

Hm : m ∈ [|ZH |]}},

where the AGG-WL produces distinct sets of refined graph colors for G,H . Next, we discuss how
the DPM-SNC can distinguish G,H . To this end, we first assume a GNN which is as powerful as the
1-WL test [20], denoted as 1-WL-GNN. Specifically, we denote χGNN

G as a graph color refined by
the 1-WL-GNN, where χT

Gm ̸= χT
Hn implies χGNN

Gm ̸= χGNN
Hn for any augmented graph pair Gm, Hn.

Then, under the χAGG
G ̸= χAGG

H , the following condition is also satisfied.

{{χGNN
Gm : m ∈ [|ZG|]}} ̸= {{χGNN

Hm : m ∈ [|ZH |]}}.

Here, we assume that DPM-SNC utilizes this 1-WL-GNN to output a graph color conditioned on an
augmented graph, i.e., pθ(χ|G, z). Then, we can connect pθ(χ|G, zm) with χGNN

Gm as follows:

pθ(χ|G, zm) = I[χ = χGNN
Gm].

where I[a = b] is an indicator function whose value is 1 if a = b and 0 otherwise. Next, we also
assume that p(z|G) is a uniform distribution over ZG. Then one can show that:

pθ(χ|G) =
1

|ZG|
∑

m∈[|ZG|]

I[χ = χGNN
Gm].

Then it follows that pθ(χ|G) ̸= pθ(χ|H) since {{χGNN
Gm : m ∈ [|ZG|]}} ≠ {{χGNN

Hm : m ∈ [|ZH |]}}.
Therefore, G,H are distinguishable by DPM-SNC.

Our proof is valid when considering the multiple outputs. However, our practical implementation
of DPM-SNC does not use multiple outputs at inference time since the DPM only considers the
multiple random variables in the training objective.5 To this end, in Appendix F, we also investigate
the inference scheme which aggregates multiple outputs to make final predictions.6

5Our inference method is described in Appendix C.1
6In practice, we also use a Gaussian diffusion for defining p(z|G), which still allows the GNN to consider

infinite augmentations.

21

C Implementation

In this section, we provide more details on how we implement the DPM-SNC for experiments.

C.1 Transductive settings

Here, we provide the detailed implementation of DPM-SNC for transductive node classification.

Model architecture. We parameterize the residual function ϵθ(y
(t), G, t) of reverse diffusion step

using a L-layer message-passing GNN as follows:

ϵθ(y
(t), G, t) = g(h(L)),

h
(ℓ)
i = (COMBINE(ℓ)(h

(ℓ−1)
i , a

(ℓ)
i) + f(t))∥y(t)i),

a
(ℓ)
i = AGGREGATE(ℓ)({h(ℓ−1)

j |(i, j) ∈ E}),

where g(h(L)) is a multi-layer perceptron that estimates the residual using the final node represen-
tation. AGGREGATE(·) and COMBINE(·) functions are identical to the backbone GNN, and ·∥·
indicates the concatenation. Here, h0

i is xi∥y(t)i . The f(·) is a sinusoidal positional embedding
function [60]. We fix the dimension of sinusoidal positional embedding to 128.

Buffer construction. Following the temperature annealing approach of Qu et al. [7] in sampling
pseudo-labels for optimization, we also control the temperature of randomness in obtaining yU

from pθ(yU |G,yL) for buffer construction. To be specific, we use the variance multiplied by the
temperature τ ∈ [0, 1], instead of the original variance in the reverse diffusion step, e.g., setting τ to
zero makes the deterministic sampling.

Inference. To make final predictions yU from pθ(yU |G,yL) for evaluation, we eliminate the
randomness in inference time, i.e., set temperature τ to zero.7 If the target is one-hot relaxation of
discrete labels, we also discretize the final prediction by choosing a dimension with maximum value.

C.2 Inductive setting

Here, we provide the details of DPM-SNC for inductive node classification and graph algorithmic
reasoning. For the inductive node classification, we use the same model architecture as in the
transductive setting and use the deterministic inference strategy. For the graph algorithmic, we modify
DPM-SNC to perform edge-wise prediction.

Graph algorithmic reasoning. Since the targets of the graph algorithmic reasoning task are defined
on the edge-level, we apply a diffusion process to the edge labels. We then recover the edge-level
noisy labels through the reverse process.

The denoising model architecture in the reverse process has a similar architecture to the model
architecture of IREM [26]. Specifically, the noisy edge target y(t) is updated as follows. First, the
noisy edge labels y(t) and edge features are concatenated and passed through to the GNN layer, which
aggregates them to obtain the node representation. Next, we apply element-wise addition of the time
embedding vector to the node representation. Then, we concatenate a pair of node representations
and noisy targets for the given edges and then apply a two-layer MLP to update edge labels.

In contrast to the node classification, we maintain randomness at inference time, i.e., we use the
stochastic reverse process for obtaining edge labels. This approach is consistent with the IREM,
which also includes randomness at inference time.

7We also investigate various stochastic inference strategies in Appendix F

22

D Data statistics

D.1 Synthetic data

We generate 1000× 2 non-attributed cyclic grid and 100× 2 non-attributed cyclic grid for scattered
and localized training nodes scenarios, respectively. Then, we split 30%, 30%, and 40% of the entire
nodes into training, validation, and test nodes.

• Scattered training nodes: We randomly sample nodes in the graph to split them into training,
validation, and test nodes.8

• Localized training nodes: We select the nodes in the region within the 30 × 2 grid as training
nodes. Then, we randomly sample the remaining nodes in the graph to split them into validation
and test nodes.

For illustrative purposes, we also describe both scenarios in Figure 10 with smaller graphs.

(a) Scatter-training (b) Scatter-test/validation (c) Local-training (d) Local-test/validation

Figure 10: Illustration of two scenarios. The non-gray nodes represent nodes in each split.

D.2 Transductive node classification datasets

Table 6: The data statistics of transductive node classification datasets.
Dataset ♯ nodes ♯ edges ♯ features ♯ classes ♯ (training/validation/test) nodes

Pubmed [22] 19717 44338 500 3 (60/500/1000)
Cora [22] 2708 5429 1433 7 (140/500/1000)
Citeseer [22] 3327 4732 3703 6 (120/500/1000)
Photo [23] 7487 119043 745 8 (160/240/7087)
Computers [23] 13381 34493 767 10 (200/300/12881)
Roman [24] 22662 32927 300 18 (11331/5665/5666)
Ratings [24] 24492 93050 300 5 (12246/6123/6123)

Here, we consider a graph with partially labeled nodes. We describe the data statistics in Table 6.

D.3 Inductive node classification datasets

Table 7: The data statistics of inductive node classification datasets.
(training/validation/test) data

Dataset ♯ features ♯ classes ♯ graphs Avg. ♯ nodes Avg. ♯ edges

Pubmed [9] 500 3 (60/500/1000) (6.0/5.4/5.6) (6.7/5.8/6.7)
Cora [9] 1433 7 (140/500/1000) (5.6/4.9/4.7) (7.0/5.8/5.3)
Citeseer [9] 3703 6 (120/500/1000) (4.0/3.8/3.8) (4.3/4.0, 3/8)
PPI [25] 500 3 (20/2/2) (2245.3/3257.0/2762.0) (61318.4/99460.0/80988.0)

Here, we consider datasets consists of a set of graphs. We describe the data statistics in Table 7.

8Additionally, we also consider training with an additional 2× 20 cyclic grid for visualization in Figure 1.

23

D.4 Graph algorithmic reasoning datasets

Following Du et al. [26], we generate training graphs in each training step. Here, the training graphs
are composed of graphs of varying sizes, ranging from two to ten nodes. The node features are
initialized to zero, and the labels are defined on the edges, e.g., the shortest distance between two
nodes. Then, we evaluate performance on graphs with ten nodes. Furthermore, we also use graphs
with 15 nodes to evaluate generalization capabilities.

24

E Experiments setup

In this section, we describe the detailed experimental setup. For all experiments, we use a single
GPU of NVIDIA GeForce RTX 3090. The hyper-parameters for each experiment are described in the
following subsections.

E.1 Synthetic dataset

In this experiment, we implement each method with a one-layer GCN with 16 hidden dimensions.
We search the learning rate within {1e−3, 5e−3, 1e−2} for all methods. Other hyper-parameters of
each method follow their default settings. For DPM-SNC, we fix the diffusion step to 100. We also
set the size of the buffer to 50 and insert five samples into the buffer for every 30 training step. We
use a pre-trained mean-field GNN until the buffer is updated 10 times.

E.2 Transductive node classification

Table 8: The hyper-parameter search ranges for the homophilic graph. For hyper-parameters without
a specific method in parentheses, it applies to all methods in the respective category.

Method Hyper-parameters Search range

All methods learning rate {1e−3, 5e−3, 1e−2}
weight decay {1e−3, 5e−3, 1e−2}

GNN-based methods
(LPA, GMNN, G3NN,
CLGNN, DPM-SNC)

number of layers {2, 4}
hidden dimension {64, 128}
weight of constraints for structured-prediction (LPA, G3NN) {0.1, 1.0, 10.0}
pseudo-labels sampling temperature
(GMNN, CLGNN, DPM-SNC) {0.1, 0.3, 1.0}

Non-GNN methods
(LP, PTA)

number of label propagation {10, 100}
hidden dimension (PTA) {64, 128}
damping factor {0.1, 0.3, 0.5}

Homophilc graph. We describe the hyper-parameter search ranges in Table 8. Additionally, we
apply dropout with p = 0.5 except for LP. Other hyper-parameters of each method follow their
default settings. For DPM-SNC, we fix the diffusion step to 80. We also set the size of the buffer to
50 and insert five samples into the buffer for every 100 training step. We use a pre-trained mean-field
GNN until the buffer is updated 20 times.

Table 9: The hyper-parameter search ranges
of DPM-SNC for the heterophilic graph.

Hyper-parameters Search range

learning rate {3e−5, 1e−4, 3e−4}
weight decay {0, 1e−5, 1e−4}
number of layers {2, 4}
hidden dimension {256, 512}
sampling temperature {0.1, 0.3, 1.0}

Heterophilic graph. Here, we describe the hyper-
parameter settings for DPM-SNC as we use the num-
bers reported by Plantov et al. [24] for baselines. We
describe the hyper-parameter search ranges in Table 9.
Additionally, we apply dropout with p = 0.5, and we
fix the diffusion step to 80. We also set the size of the
buffer to 50 and insert five samples into the buffer for
every 100 training step. We use a pre-trained mean-
field GNN until the buffer is updated 100 times.

E.3 Inductive node classification

Table 10: The hyper-parameter search ranges of all methods for the inductive node classificaiton.
Hyper-parameters Search range

learning rate {1e−3, 5e−3, 1e−2} for small-scale graphs and {3e−5, 1e−4, 3e−4} for huge-scale graphs
weight decay {1e−3, 5e−3, 1e−2} for small-scale graphs and {0, 1e−5, 1e−4} for huge-scale graphs
number of layers {2, 4}
hidden dimension {64, 128} for small-scale graphs and {512, 1024} for huge-scale graphs

We describe the hyper-parameter search ranges in Table 10. For the small-scale graph datasets, i.e.,
Pubmed, Cora, and Citeseer, we apply dropout with p = 0.5. For the huge-scale graph datasets, i.e.,
PPI, we include the linear skip connection between each GNN layer. Other hyper-parameters of each
method follow their default settings. For DPM-SNC, we fix the diffusion step to 80.

25

E.4 Algorithmic reasoning

Here, we describe the hyper-parameter settings for DPM-SNC as we use the numbers reported by Du
et al. [26] for baselines. We search the learning rate and weight decay within {1e−4, 3e−4, 1e−3}
and {0, 1e−5, 1e−4}, respectively. The hyper-parameters of the model are the same as the model
implementation of IREM, using a three-layer GINEConv [61] with a 128 hidden dimension. We fix
the diffusion step to 80.

26

F Additional experiments

Ablations on various inference schemes. We also study various inference strategies for our
DPM-SNC. We first investigate how temperature control affects label inference in real-world node
classification tasks. In Figure 11(a), we plot the changes in accuracy for various temperatures τ . One
can see that reducing the randomness of DPM-SNC gives a better prediction in real-world node
classification tasks.

We also consider sampling various numbers of predictions for node-wise aggregation to improve
performance. In Figure 11(b), even the number of samples is increased to 210, the deterministic
and the node-wise aggregation inference schemes show similar accuracy, and there are only minor
performance improvements on Citeseer. In practice, we use deterministic inference in the node
classification tasks since the node-wise aggregation requires a relatively long time.

0.00 0.25 0.50 0.75 1.00
Temperature

50

60

70

80

Ac
cu

ra
cy

Pubmed
Cora
Citeseer

(a)

20 22 24 26 28 210

Number of samples
50

60

70

80

Ac
cu

ra
cy

Pubmed
Cora
Citeseer

(b)

Figure 11: (a) Accuracy with varying temperature. (b) Accuracy with the varying number of samples.
The dashed line represents the accuracy of the deterministic inference scheme.

27

