
Preprint. Under review.

LEARNING ENERGY DECOMPOSITIONS FOR
PARTIAL INFERENCE OF GFLOWNETS

Hyosoon Jang1, Minsu Kim2, Sungsoo Ahn1

1POSTECH 2KAIST
{hsjang1205,sungsoo.ahn}@postech.ac.kr, min-su@kaist.ac.kr

ABSTRACT

This paper studies generative flow networks (GFlowNets) to sample objects from
the Boltzmann energy distribution via a sequence of actions. In particular, we
focus on improving GFlowNet with partial inference: training flow functions with
the evaluation of the intermediate states or transitions. To this end, the recently
developed forward-looking GFlowNet reparameterizes the flow functions based
on evaluating the energy of intermediate states. However, such an evaluation
of intermediate energies may (i) be too expensive or impossible to evaluate and
(ii) even provide misleading training signals under large energy fluctuations along
the sequence of actions. To resolve this issue, we propose learning energy decompo-
sitions for GFlowNets (LED-GFN). Our main idea is to (i) decompose the energy of
an object into learnable potential functions defined on state transitions and (ii) repa-
rameterize the flow functions using the potential functions. In particular, to produce
informative local credits, we propose to regularize the potential to change smoothly
over the sequence of actions. It is also noteworthy that training GFlowNet with
our learned potential can preserve the optimal policy. We empirically verify the
superiority of LED-GFN in five problems including the generation of unstructured
and maximum independent sets, molecular graphs, and RNA sequences.

1 INTRODUCTION

Generative Flow Networks (Bengio et al., 2021a, GFlowNets or GFNs) are frameworks to sample
objects through a sequence of actions, e.g., iteratively adding nodes to a graph. Their key concept
is training a policy that sequentially selects the actions to sample the object from the Boltzmann
distribution (Boltzmann, 1868). Such concepts enable discovering diverse samples with low energies,
i.e., high scores, as an alternative to reinforcement learning (RL)-based methods which tend to
maximize the return of the sampled object (Silver et al., 2016; Sutton & Barto, 2018).

To sample from the Boltzmann distribution, GFlowNet trains the policy to assign action selection
probability based on energy of terminal state (Bengio et al., 2021a;b; Malkin et al., 2022a), e.g.,
a high probability to the action responsible for the low terminal energy. However, such training
has fundamental limitations in credit assignment, as it is hard to identify the action responsible for
terminal energy (Pan et al., 2023a). This limitation stems from solely relying on the terminal energy
associated with multiple actions, lacking the information to identify the contribution of individual
actions, akin to challenges in RL with sparse reward (Arjona-Medina et al., 2019; Ren et al., 2022).

An attractive paradigm to tackle this issue is partial inference (Pan et al., 2023a) that trains flow
functions with local credits, e.g., evaluation of the intermediate states or transitions. Such local credit
identifies individual action contributions to the terminal energy before reaching the terminal state.
To this end, Pan et al. (2023a) proposed a forward-looking GFlowNet (FL-GFN), which assigns the
local credit based on the energy of incomplete objects associated with intermediate states.

However, FL-GFN crucially relies on two assumptions that may not hold in practice. First, FL-GFN
requires evaluating the energy of the intermediate state in the trajectories. However, the energy
function can be expensive or even impossible to evaluate. Next, FL-GFN assumes the energy of
intermediate states to provide useful hints for the terminal energy. However, this may not be true
when the intermediate energy largely fluctuates along the sequence of states, e.g., low intermediate
energies may lead to a terminal state with high energy. We illustrate such a pitfall in Figure 1.
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Figure 1: The local credit evaluation in bag generation (Example 1). (first row) The task is to
generate a bag of entities, where the seven same entities yields a high score. (second row) Left-to-
right indicates the state transitions over a given trajectory. (third row) The energy-based evaluation
fails to produce informative local credits since every intermediate state has zero energy, whereas our
potential function produces informative credits by enforcing the potentials to be uniformly distributed.

Contribution. We propose learning energy decomposition for GFlowNet, coined LED-GFN. Our
key idea is to perform partial inference by decomposing terminal state energy into a sum of learnable
potentials associated with state transitions and use them as local credits. In particular, we show how to
regularize the potential function to preserve the ground-truth terminal energy and minimize variance
over the trajectory to yield informative potentials. Figure 1 highlights how LED-GFN provides
informative local credits compared to the existing approach.

To be specific, our energy decomposition framework resembles the least square-based return decom-
position for episodic reinforcement learning (Efroni et al., 2021; Ren et al., 2022). We parameterize
potential function with a regression model that is constrained to be equal to the terminal energy when
aggregated over the entire action sequence. We also regularize the potential function to minimize the
variance along the trajectory, so that the potential function provides dense local credits in training
GFlowNet. Such potentials associated with intermediate transitions provide informative signals, as
each of them is enforced to be correlated with the terminal energies. The training of potential function
is online, which uses samples collected during GFlowNet training.

We extensively validate LED-GFN on various tasks: set generation (Pan et al., 2023a), bag generation
(Shen et al., 2023), molecular discovery (Bengio et al., 2021b), RNA sequence generation (Jain
et al., 2022), and the maximum independent set problem (Zhang et al., 2023). We observe that
LED-GFN (1) outperforms FL-GFN when the assumption of intermediate energy does not hold, (2)
excels in practical domains compared to GFlowNets and RL-based baselines, and (3) achieves similar
performance to FL-GFN even when intermediate energy provides the “ideal” local credit.

2 PRELIMINARIES

In this section, we describe generative flow networks (Bengio et al., 2021a, GFlowNets or GFNs) and
their partial inference algorithm. We describe additional related works in Appendix A.

2.1 GFLOWNETS

GFlowNets sample from discrete space X through a sequence of actions from the action space A that
make transitions in the state space S . For each complete trajectory τ = (s0, s1, . . . , sT ), the terminal
state is the object x = sT ∈ X to be generated. The state transitions are determined by the action
sequence (a1, . . . aT−1), e.g., at determines st → st+1. The policy PF (s

′|s) selects the action a to
transition from the current state s to the next state s′ and induces a distribution over the object x.

The main objective of GFlowNet is to train the policy PF (·|·) that samples objects from the Boltzmann
distribution with respect to a given energy function E : X → R as follows:

P⊤
F (x) ∝ exp(−E(x)), (1)

where P⊤
F (x) is the distribution of sampling an object x induced from marginalizing over the

trajectories conditioned on x = sT . We omit the temperature for simplicity. To this end, GFlowNet
trains with auxiliary objectives based on state transition, trajectory, or sub-trajectory information.
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Detailed balance (Bengio et al., 2021b, DB). The DB utilizes the experience of state transitions to
train GFlowNet. It trains the GFlowNet with a forward policy model PF (s

′|s), a backward policy
PB(s|s′), and a state flow estimator F (·) : S → R+ by minimizing the following loss function:

LDB(s, s
′) = (logF (s) + logPF (s

′|s)− logF (s′)− PB(s|s′))
2
,

where the flow F (s) of the terminal state sT = x is defined to be identical to the energy exp(−E(x)).
Trajectory balance (Malkin et al., 2022a, TB). The TB aims to learn the policy faster by training
on full trajectories. To this end, TB requires a forward policy model PF (s

′|s), a backward policy
PB(s|s′), and a learnable scalar Z to minimize the following loss function:

LTB =

(
logZ +

T−1∑
t=0

logPF (st+1|st)− E(x)−
T−1∑
t=0

logPB(st|st+1)

)2

.

This objective is resilient to the bias from inaccurate flow estimator F (·) used in DB, since it directly
propagates the terminal energy to train on intermediate states. However, the TB suffers from the high
variance of the objective over the collected trajectories (Malkin et al., 2022a).

Sub-trajectory balance (Madan et al., 2023, subTB). The subTB trains forward and backward
policies PF (s

′|s), PB(s
′|s) and a learnable scalar Z similar to the TB. However, it trains on flexible

length of sub-trajectory sU → sU+1 · · · → sU+L to minimize the following loss function:

LsubTB =

(
logF (sU ) +

U+L−1∑
t=U

logPF (st+1|st)− logF (sU+L)−
U+L−1∑
t=U

logPB(st|st+1)

)2

.

This objective enables controlling the bias-variance trade-off by interpolating between the DB that
trains on a single state transition and the TB that trains on a complete trajectory.

2.2 PARTIAL INFERENCE FOR GFLOWNETS

The GFlowNet training is often challenged by limitations in credit assignment, i.e., identification and
promotion of the action responsible for the observed low energy. This limitation stems from relying
solely on the terminal state energy as the training signal. The terminal energy lacks information to
identify the contribution of individual action, akin to how reinforcement learning with sparse reward
suffers from credit assignment (Arjona-Medina et al., 2019; Ren et al., 2022).

Partial inference is a promising paradigm to resolve this issue by incorporating local credits (Pan et al.,
2023a). Specifically, the partial inference aims to evaluate individual transitions or sub-trajectories,
i.e., local credits, and provide informative training signals for identifying the specific contributions
of actions. To this end, Pan et al. (2023a) proposed Forward-Looking GFlowNet (FL-GFN), which
evaluates intermediate state energy as a local credit signal for partial inference.

Forward-Looking GFlowNet (Pan et al., 2023a, FL-GFN). To enable partial inference, the FL-GFN
defines a new training objective that incorporates an energy function E : X → R for intermediate
states. To this specific, FL-GFN modifies the DB as follows:

LFL(s, s
′) = (log F̃ (s) + logPF (s

′|s)− E(s) + E(s′)− log F̃ (s′)− logPB(s|s′))2, (2)

where F̃ (s) = F (s) exp (E(s)) is the re-parameterized flow function and E(s′)− E(s) is the energy
gain associated with the transition from s to s′. Note that the energy function is defined only on the
discrete spaceX , hence FL-GFN evaluates an intermediate energy E(s) as the energy of an incomplete
object associated with the intermediate state s. Pan et al. (2023a) shows that optimum of Equation (2)
induces a policy PF (·|·) that samples from Boltzmann distribution. While Equation (2) is associated
with DB, FL-GFN is also applicable to subTB with energy gains in the level of sub-trajectory.

3 LEARNING ENERGY DECOMPOSITION FOR GFLOWNET

While the FL-GFN is equipped with partial inference capabilities, it relies on the energy function
to assign local credits, which can be expensive to evaluate, or lead to sub-optimal training signals
(details are described in Section 3.1). In this paper, we propose learning energy decomposition
for GFlowNets (LED-GFN) to achieve better partial inference. In what follows, we describe our
motivation for better partial inference (Section 3.1) and the newly proposed LED-GFN (Section 3.2).
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Figure 2: Illustration of energy decomposition for partial inference of GFlowNet. LED-GFN
enables partial inference with potentials which (a) approximate the object energy via summation, and
(b) minimize variance along the action sequence.

3.1 MOTIVATION FOR BETTER PARTIAL INFERENCE
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Figure 3: Negative relative mean
error (↓) for estimating the true
Boltzmann distribution on Exam-
ple 1-type task (Bag).

Our motivation stems from the limitations of FL-GFN, which
performs partial inference based on evaluating the energies of
intermediate states with respect to a single transition (for DB) or
sub-trajectory (for subTB). In particular, we are inspired by how
the energy gain may yield a sub-optimal local credit signal due
to the following pitfalls (see Figures 1 and 9(b)).

A. The energy evaluation for an incomplete object, i.e., interme-
diate state, can be non-trivial. In addition, the cost of energy
evaluation can be expensive, which can bottleneck efficient
training when called for all visited states.

B. The energy can exhibit sparse or high variance on interme-
diate states within a trajectory, even returning zero for most
states, which is non-informative for partial inference.

We further provide a concrete example for the pitfall B. of FL-GFN, which is illustrated in Figure 1
and Figure 31 for both conceptual and empirical purposes, respectively:
Example 1. Consider adding objects from {A,B,C,D,E} to a bag with a maximum capacity of
nine. Define the energy as −1 when the bag contains seven identical objects and 0 otherwise.

For Example 1, the intermediate energy (which is always 0) does not provide information for the
terminal energy. However, the number of the most frequent elements in the bag is informative even at
intermediate states since greedily increasing the number leads to the best terminal state.

Our observation in Example 1 hints at the existence of a partial inference algorithm to provide
better local credit signals. We aim to pursue this direction with a learning-based approach. That
is, we parameterize the class of potential functions that decompose the terminal energy to provide
local credit signals for GFlowNet training. Our key research direction is to understand about what
conditions of the potential functions are informative for partial inference.

3.2 ALGORITHM DESCRIPTION

In this section, we describe our framework, coined learning energy decomposition for GFlowNet
(LED-GFN), which facilitates partial inference using learned local credit. To this end, we propose
to decompose the terminal energy into learnable potentials defined on state transitions. Similar to
FL-GFN, we reparameterize the flow model with local credits, i.e., potentials. In contrast to FL-GFN,
we optimize the local credits to enhance partial inference by minimizing variance of potentials along
the action sequence. See Figure 2 for an illustration of LED-GFN.

Training with potential functions. To be specific, we decompose the energy function E associated
with the terminal state into learnable potential functions ϕθ as follows:

E(x) ≈ Φθ(τ) =

T−1∑
t=0

ϕθ(st → st+1), (3)

where τ = (s0, s1, . . . , sT ), x = sT , and the potential functions are defined on state transition
st → st+1. Similar to FL-GFN, we use the potential function to train the forward and backward

1The detailed experiment settings are described in Section 4.1.
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Algorithm 1 Learning energy decomposition for GFlowNet

1: Initialize the buffer B, forward and backward policy PF , PB , state flow F̃ , and model ϕθ.
2: Update the model ϕθ to minimize ℓED if the generation trajectories are given in advance.
3: repeat
4: Sample a batch of trajectories {τb}B1

b=1 from forward policy PF .
5: Update buffer B ← B ∪ {τb}B1

b=1.
6: for n = 1, . . . , N do ▷ Energy decomposition learning
7: Sample a batch of trajectories {τb}B2

b=1 from the buffer B.
8: Update the model ϕθ to minimize ℓLS with {τb}B2

b=1.
9: end for

10: Compute intermediate energy gains ϕθ(si, ai) for all (si, ai) ∈ τ .
11: Update the GFlowNet PF , PB , F̃ to minimize LLED with τ and ϕθ(si, ai) for all (si, ai) ∈ τ .
12: until converged

GFlowNet policies PF , PB and flow model F to minimize the following loss:

LLED(s, s
′) = (log F̃ (s) + logPF (s

′|s) + ϕθ(s→ s′)− log F̃ (s′)− logPB(s|s′))2. (4)

Given a sub-trajectory (s0, . . . , su = s, su+1 = s′), one can derive this objective from Equation (2)
by replacing E(s), E(s′) with

∑u
t=0 ϕ(st) and

∑u+1
t=0 ϕ(st), respectively. That is, it is evident that

Equation (4) preserves the optimal policy of GFlowNet when E(x) = Φθ(τ) is satisfied for all
trajectories τ terminating with x.

Our objective becomes equivalent to that of FL-GFN when ϕθ(s→ s′) = E(s′)− E(s), but our key
idea is to learn the potential function ϕθ instead of the energy gain which can be expensive and may
exhibit sparsity or high variance, as pointed out in Section 3.1. Note that one can also introduce an
approximation error E(x)− Φθ(τ) as an additional correction term to preserve the optimal policy
of GFlowNet even when the potential function ϕθ is inaccurate. In Appendix B.1, we describe how
LED-GFN consistently induces the optimal policy that samples from the Boltzmann distribution.

Training potentials with squared loss. In training the potential function, our key motivation is
twofold: (a) accurately estimating the true energy through summation and (b) providing dense and
informative training signals by minimizing variance along the action sequence.

To this end, given a trajectory τ = (s0, . . . , sT = x), we train the potential functions ϕθ to minimize
the loss function for (a) achieving E(x) ≈ Φθ(τ) with (b) dropout-based regularization:

ℓLS(τ) = Ez∼Bern(λ)

( 1

T
E(sT )−

1

C

T−1∑
t=0

ztϕθ(st → st+1)

)2
 . (5)

The T -length random vectors z promotes the dropout, where zt = 0 sampled from the Bernoulli
distribution with probability 1−λ. Dividing by T and C =

∑T−1
t=0 zt aligns the scales to compensate

for the scale reduction induced by dropout. When λ = 1 and the loss function is minimized, i.e.,
ℓLS(τ) = 0 for all τ , the potential function decomposes the energy function without error. When
λ < 1, dropout prevents heavy reliance on specific potentials to satisfy Equation (3), thereby reducing
the variance and sparsity of the potentials along the action sequence.2 Note that our intuition is
similar to recent works on learning return decomposition to alleviate sparse reward problems in
reinforcement learning (Arjona-Medina et al., 2019; Gangwani et al., 2020; Ren et al., 2022).

To train the potential function, we define its training as online learning within GFlowNet training,
i.e., learning from trajectories obtained during GFlowNet training. We describe the overall algorithm
in Algorithm 1. Such an alternative training of the potential function and the policy is similar to
model-based reinforcement learning algorithms (Luo et al., 2018; Sun et al., 2018; Janner et al., 2019)
for monotonic improvement of policies. Note that LED-GFN can also be implemented with subTB,
where the details are described in Appendix B.2.

2Ren et al. (2022) provide a formal proof that Equation (5) serves as a surrogate objective to satisfy
Equation (3) while reducing the variance and sparsity of the potentials along the action sequence.
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Figure 4: The performance on bag generation. The solid line and shaded region represent the mean
and standard deviation, respectively. The LED-GFN shows superiority compared to the considered
baselines on both DB-based and subTB-based implementations.
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Figure 5: The performance on molecule generation. The solid line and shaded region represent
the mean and standard deviation, respectively. The LED-GFN shows superiority compared to the
considered baselines in generating diverse high reward molecules.

4 EXPERIMENT

We extensively evaluate LED-GFN on various domains, including bag generation (Shen et al.,
2023), molecule generation (Bengio et al., 2021a), RNA sequence generation (Jain et al., 2022),
set generation (Pan et al., 2023a), and the maximum independent set problem (Zhang et al., 2023).
Following prior studies, we consider the number of modes, i.e., samples with energy lower than a
specific threshold, and the average top-100 score as the base metrics, which are measured via samples
collected during training. We report all the performance using three different random seeds.

4.1 BAG GENERATION

First, we consider a bag generation task (Shen et al., 2023). The action is adding an object from
seven distinct entities to a bag with a maximum capacity of 15. The bag exhibits low energy when
including seven or more repeated entities of the same type. In this task, we compare our method with
GFN and FL-GFN. We consider both DB-based (Bengio et al., 2021b) and subTB-based (Malkin
et al., 2022a) implementations. The detailed experimental settings are described in Appendix C.

Results. We present the results in Figure 4. Here, one can observe that our method excels in bag
generation compared to GFN and FL-GFN on both DB and subTB. In particular, FL-GFN fails to
make improvements on the subTB-based implementation, since most states do not provide informative
signals for partial inference (as illustrated in Figure 1). In contrast, LED-GFN consistently improves
performance by producing informative potentials to enhance partial inference.

4.2 MOLECULE GENERATION

Next, we validate LED-GFN in a more practical domain: the molecule generation task (Bengio et al.,
2021a). This task aims to find molecules with low binding energy to the soluble epoxide hydrolase
protein. In this task, a molecule is generated by constructing junction trees (Jin et al., 2018), with the
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Figure 6: The performance on RNA sequence generation. The solid line and shaded region
represent the mean and standard deviation, respectively. The LED-GFN shows superiority compared
to the considered baselines in generating diverse high reward RNA sequences.

actions of adding molecular building blocks. The binding energy between the molecule and the target
protein is computed using a pre-trained oracle (Bengio et al., 2021a).

In this experiment, we consider PPO (Schulman et al., 2017), and three GFN models: DB, TB, and
subTB (Madan et al., 2023) as the baselines. Additionally, we compare our approach with GAFN (Pan
et al., 2023b) and FL-GFN. For FL-GFN and LED-GFN, we consider a subTB-based implementation.
The overall implementations and experimental settings follow prior studies (Bengio et al., 2021a; Pan
et al., 2023a), which are described in Appendix C.

Results. The results are presented in Figure 5. One can see that LED-GFN outperforms the
considered baselines in enhancing the average score of unique top-100 molecules and the number of
modes found during training. These results highlight that LED-GFN is also beneficial for real-world
generation problems with a large state space.

4.3 RNA SEQUENCE GENERATION

We also consider a RNA sequence generation task for discovering diverse and promising RNA
sequences that bind to human transcription factors (Barrera et al., 2016; Trabucco et al., 2022; Jain
et al., 2022). The action is appending or prepending an amino acid to the current sequence. The
energy is pre-computed based on wet-lab measured DNA binding activity to Sine Oculis Homeobox
Homolog 6 (Barrera et al., 2016). We consider the same baselines as in the molecule generation task.

Results. The results are presented in Figure 6. One can observe that LED-GFN outperforms
the considered baselines. Furthermore, FL-GFN only makes minor differences compared to GFN,
while LED-GFN makes noticeable improvements. These results highlight that energy-based partial
inference can fail to improve performance in practical domains, while the potential learning-based
approach consistently leads to improvements.

4.4 COMPARISON WITH IDEAL LOCAL CREDITS

In these experiments, we demonstrate that LED-GFN can achieve similar performance compared to
FL-GFN, even when the intermediate state energy is sufficient to identify the contribution of the
action, i.e., ideal local credit (Zhang et al., 2023). Note that this tasks are idealized, since designing
such an energy function requires a complete understanding of the domain. Especially, we focus on
two tasks: set generation (Pan et al., 2023a) and the maximum independent set problem (Zhang et al.,
2023). For these tasks, we compare our method with GFN and FL-GFN.

Set generation. The set generation task is similar to the bag generation. The actions are adding an
objects from 30 distinct objects to a set with a maximum capacity of 20. The energy is evaluated
by accumulating the individual energy of each entity, so the intermediate energy gain has complete
information to identify the contribution of each action (Pan et al., 2023a). We describe the detailed
experiment settings in Appendix B.
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Figure 7: The performance comparison with ideal local credits. The solid line and shaded region
represent the mean and standard deviation, respectively. The LED-GFN shows similar performance
to the FL-GFN, even when the intermediate energy is sufficient to identify the action contribution.
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Maximum independent set problem. This task aims to find the maximum independent set by
selecting nodes, and the energy is evaluated based on the current size of the independent set (Zhang
et al., 2023). Here, we compare the performance on validation graphs following Zhang et al. (2023).
At each step, we sample 50 solutions for each validation graph to measure the average scores and
the number of mode founds (greater than 18.5). The overall implementations and hyper-parameters
follow prior studies (Zhang et al., 2023).

Results. As illustrated in Figure 7, one can see that our approach achieves similar performance to
FL-GFN, even though the intermediate state energy provides ideal local credit for partial inference.
These results highlight that the potentials of LED-GFN can be as informative as ideal local credit,
which provides complete identification of the action contributions.

4.5 ABLATION STUDIES

Goodness-of-fit to the true Boltzmann distribution. We show that how well our algorithm make
a good sampling distribution to sample from the target distribution, i.e., Boltzmann distribution.
Following Shen et al. (2023), we measure the relative mean error between the empirical generative
distribution and target distribution following. In Figures 8(a) and 8(b), one can observe that LED-GFN
achieves a better approximation to target distribution compared to considered baselines.

Diversity vs. high score. Next, we further verify that our algorithm not only generates high-scoring
samples but also diverse molecules. Specifically, we analyze the trade-off between the average
score of the top-100 samples and the diversity these samples. To measure diversity, we compute the
average pairwise Tanimoto similarity (Bajusz et al., 2015). In Figure 8(c), we illustrate the Tanimoto
similarities with respect to the average of top-100 scores. Here, one can observe that LED-GFN
achieves better diversity with respect to the average scores.

8



Preprint. Under review.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Number of samples (×105)

2.0

4.0

6.0

8.0

Nu
m

be
r o

f m
od

es
 (×

10
1 )

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Number of samples (×105)

2.1

2.3

2.5

2.7

Av
g 

of
 to

p-
10

0 
(×

10
1 )

with regularization
w/o regularization

(a) Set generation

0.0 0.5 1.0 1.5 2.0 2.5
Number of oracle calls (×105)

1.0

3.0

5.0

7.0

9.0

Nu
m

be
r o

f m
od

es
 (×

10
2 )

0.0 0.5 1.0 1.5 2.0 2.5
Number of oracle calls (×105)

6.0

6.5

7.0

7.5

8.0

Av
g 

of
 to

p-
10

0

LED-subTB
FL-subTB
GFN-subTB

(b) Molecule generation

Figure 9: (a) The benefits of regularizing variance of potentials. The regularization improves the
performance. (b) The performance over the number of energy evaluation. The FL-GFN can not
make improvement with respect to the number of energy evaluation.
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Figure 10: Comparison between potential learning methods for partial inference. The least-
square based energy decomposition shows most promising results for partial inference.

Regularized vs. non-regularized potentials. We also analyze how reducing the variance of potentials
benefits the improvement in performance. To this end, we compare energy decomposition learning
with variance regularization and its counterpart without regularization, i.e., set λ = 1 in Equation (5).
In Figure 9(a), one can see that applying regularization yields more promising performance. These
results highlight that inducing dense potentials plays a significant role in improving performance.

Number of energy evaluation vs. performance We analyze the performance with respect to the
number of energy evaluation, which can be expensive. In Figure 9(b), one can see that FL-GFN can
not improve performance since it requires evaluating the energy for every visited states. In contrast,
LED-GFN uses a potential function without energy evaluation for intermediate states.

Energy decomposition learning vs. alternative potentials learning. We further investigate the
following alternative potential learning schemes.

• One may train a proxy model ϕθ : X → R to predict the terminal energy, and utilize it to compute
potentials ϕθ(s → s′) = ϕθ(s

′) − ϕθ(s). This approach can be interpreted as extension of
model-based GFlowNet (Jain et al., 2022) for partial inference.

• Based on the LSTM-based decomposition method (Arjona-Medina et al., 2019), one can de-
sign the potential ϕθ(st → st+1) as the difference between two subsequent predictions for
(s0, a0, . . . , st, at) and (s0, a0, . . . , st+1, at+1) using an LSTM.

In Figure 10, we compare each method in molecule and set generation tasks with a DB-based
implementation. Here, one can see that the least square-based approach shows the most competitive
performance due to its capabilities in producing dense and informative potentials.

5 CONCLUSION

In this paper, we propose learning energy decomposition for GFlowNets (LED-GFN). Experiments
on various domains show that LED-GFN is promising compared to existing partial inference methods
for GFlowNet. An interesting avenue for future work is developing new partial inference techniques
using learnable local credit, other than the flow reparameterization considered in our work.
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Reproducibility. We describe experimental details in Appendix C, which provides the base imple-
mentation references, environments, and detailed hyper-parameters. In the supplementary materials,
we also include the codes for molecule generation tasks based on the official implementation codes
of the prior study (Pan et al., 2023a).
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A RELATED WORKS

Generative augmented flow network (Pan et al., 2023b, GAFN). The GAFN is a learning frame-
work that incorporates intermediate rewards for exploration purposes. Specifically, GAFN measures
the novelty score of a given state, which provides an intrinsic signal to facilitate better exploration
towards unvisited states. To compute the novelty score, this method also incorporates online training
of random network distillation (Burda et al., 2019), which assigns lower scores to unseen states
compared to more frequently observed states.

Model-based GFlowNet. Jain et al. (2022) propose model-based training of GFlowNet for discover-
ing diverse and promising biological sequences. They train a proxy model of the energy function
to mitigate the expensive cost of evaluating biological sequences, such as wet-lab evaluation. Addi-
tionally, they introduce an active learning algorithm for the model-based GFlowNet, leveraging the
epistemic uncertainty estimation of the model to improve exploration.

Return decomposition learning. Our LED-GFN approach is inspired by return decomposition
learning of reinforcement learning in sparse reward settings. Their goal is to decompose the return
into step-wise dense reward signals (Arjona-Medina et al., 2019; Gangwani et al., 2020; Ren et al.,
2022). They have studied various return decomposition methods. First, Arjona-Medina et al. (2019)
utilize an LSTM-based model to produce step-wise proxy rewards. Next, Gangwani et al. (2020)
propose a simple approach that uniformly redistributes the terminal reward over the trajectory. Ren
et al. (2022) train a proxy reward function using randomized return decomposition learning which is
contrained to produces dense and informative proxy rewards.
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B DETAILS OF LED-GFN

B.1 PRESERVING OPTIMAL POLICY OF GFLOWNET

Although the potential function is inaccurate, we show that optimum of LLED can induce an optimal
policy that samples from Boltzmann distribution. We give a simple proof by reduction to the optimum
of DB objective (Bengio et al., 2021b). Suppose the parameterization ϕθ(s→ s′) = ϕθ(s

′)− ϕθ(s),
and log F̂ (s) = −ϕθ(s) + log F̃ (s). Then, we can reformulate LLED as follows:

LLED(s, s
′) =

(
log F̂ (s) + logPF (s

′|s)− log F̂ (s′)− PB(s|s′)
)2

.

If we add an additional correction term −E(x) + Φθ(τ) = −E(x) + ϕθ(x) to the terminal flow such
that log F̂ (x) = −E(x), this objective becomes to be equivalent to the reparameterization of DB,
where the optimum induces a policy sampling from a Boltzmann distribution (Bengio et al., 2021b).
Therefore, the optimum of LED-GFN can still induce the policy that samples from the Boltzmann
distribution. We refer to this correction-based approach as LED-GFN∗.

However, our implementation follows a prior study in return decomposition learning (Ren et al.,
2022), which uniformly redistributes the decomposition error over the transitions within the given
trajectory (we denote this approach as LED-GFN in experiments). In Figure 11, we empirically
observe that this approach further improves the training of GFlowNets. We assume that uniformly
redistributed decomposition error partially provides more dense and informative local credit signals
correlated with future energy.
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Figure 11: The performance on bag generation.

B.2 TRAINING ON SUBTB

The LED-GFN can also be implemented on subTB by incorporating the potentials within sub-
trajectories. To this specific, one can modify subTB as follows:

LLED-subTB =(
log F̃ (sU ) +

V−1∑
t=U

logPF (st+1|st) +
V−1∑
t=U

ϕθ(st → st+1)− log F̃ (sV )−
V−1∑
t=U

logPB(st|st+1)

)2

,

which is based on a sub-trajectory sU → sU+1 · · · → sV . This objective is equivalent to FL-GFN on
the subTB when ϕθ(s→ s′) = E(s′)− E(s) (Pan et al., 2023a), but we replace it with the potentials
for better credit assignment.
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C EXPERIMENTAL DETAILS

For all experiments, the neural network architecture of potential function is identical to that of
GFlowNet policy. We set the learning rate for potential functions to 0.001. The dropout is applied
to potentials in least square-based energy decomposition learning Equation (5). We set the dropout
probability as 10% for tasks with a trajectory length less than 10 and 20% for others.

Bag generation (Shen et al., 2023). The experiment settings, implementations, and hyper-parameters
are based on prior studies (Shen et al., 2023). The bag generation task is to generate a bag with a
maximum capacity of 15. There are seven types of entities, where each action includes one of them in
the current bag. If it contains seven or more repeats of any items, it has reward 10 with 75% chance,
and 30 otherwise. The threshold for determining the mode is 30.

In each round, we generate B1 = 32 bags from the policy. The GFlowNet model consists of two
hidden layers with 16 hidden dimensions, which is trained with a learning rate of 1e−4. We use an
exploration epsilon of 0.01. In addition, their implementation involves a buffer for enabling backward
policy-based learning (Shen et al., 2023; Malkin et al., 2022b). We utilize this buffer for energy
decomposition learning. The mini-batch size B2 is same as B1. We set the number of iterations in
energy decomposition learning N = 8 for each round. Note that reducing N still leads to promising
results compared to baseline.

Molecule generation (Bengio et al., 2021a). The experiment settings, implementations, and hyper-
parameters are based on prior studies (Bengio et al., 2021a; Pan et al., 2023a). The maximum
trajectory length is 8, with the number of actions varying between around 100 and 2000 which is
depending on the state. The threshold for determining the mode is 7.5.

In each round, we generate four molecules, i.e., B1 = 4. The model consists of Message Passing
Neural Networks (Gilmer et al., 2017) with ten convolution steps and 256 hidden dimensions, which
is trained with a learning rate of 5e−4. We rescale the reward so that the maximum reward is close to
one, and exponent of it is set to 8.0. We use an exploration epsilon of 0.05. In energy decomposition
learning, we do not use a buffer and immediately use the molecules that are sampled in each round.
For PPO, we set the entropy coefficient to 1e−4 and do not apply the reward exponent because it
causes a gradient exploding.

RNA sequence generation (Shen et al., 2023). The experiment settings, implementations, and
hyper-parameters are based on prior studies (Shen et al., 2023). The action is defined as prepending
or appending an amino acid to the current sequence. The maximum length is 8 and the number of
actions is 4. The mode is determined based on whether it is included in a predefined set of promising
RNA sequences (Shen et al., 2023).

In each round, we generate B1 = 16 sequences. The GFlowNet model consists of two hidden layers
with 128 hidden dimensions, which is trained with a learning rate of 1e−4. The reward exponent is
set to 3.0. We use an exploration epsilon of 0.01. In addition, their implementation involves a buffer
for enabling backward policy-based learning iteration (Shen et al., 2023). The hyper-parameters for
energy decomposition learning is the same as that of bag generation. For PPO, we set the entropy
coefficient to 1e−2.

Set generation (Pan et al., 2023a). The experiment settings, implementations, and hyper-parameters
are based on prior studies (Pan et al., 2023a). The set generation task is to generate a set which
involves 20 entities. There are 30 types of entities, where each action includes one of them in the
current set. We set the threshold for determining the mode as 0.25.

In each round, we generate B1 = 16 sets. The GFlowNet model consists of two hidden layers with
256 hidden dimensions, which is trained with a learning rate of 0.001. The hyper-parameters for
energy decomposition learning is the same as that of molecule generation.
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